Tracking greenhouse gas
emissions

Estimating and measuring emissions



Climate change in the news

The,.

Guardian

Revealed: more than 90% of rainforest
carbon offsets by biggest provider are
worthless, analysis shows

The investigation found that:

Only a handful of Verra’s rainforest projects showed
evidence of deforestation reductions, according to twc
studies, with further analysis indicating that 94% of
the credits had no benefit to the climate.

The threat to forests had been overstated by about
400% on average for Verra projects, according to
analysis of a 2022 University of Cambridge study.

Gucci, Salesforce, BHP, Shell, easyJet, Leon and the
band Pearl Jam were among dozens of companies and
organisations that have bought rainforest offsets
approved by Verra for environmental claims.

Offsetting project set up

A project is established to
mitigate global heating. Many
are avoided-emission projects
that prevent greenhouse gases
from being released from
deforestation or fossil fuels,
but do not remove carbon
from the atmosphere.

Step4
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Company searches for
carbon credits

Firms get carbon credits
through a specialist broker,
others go directly toa
project. Most offsets are
approved by Verra and Gold
Standard. These credits are
used to offset emissions,
allowing them to claim large
net reductions.

Guardia

Credits are calculated

Carbon credits are calculated
using dozens of methods.
Avoided-deforestation
projects estimate what would
happen if the project was not
there. Projects claim the
difference between what
happens and what could have
as credits.

Step 3

Company makes climate
claim

Once a firm has worked out
the amount of carbon they
want to offset, they buy the
equivalent amount of

credits. Many then claim the

company or product they
are selling has become
carbon neutral.

Company makes net zero
strategy

Firms work out the emissions
they are producing every year
from their own activities. In
order to meet their net zero
strategy, alongside efforts to
cut emissions, some
companies decide to buy
carbon offsets.



Assignments

Brightspace discussion question:

“Which do you think plays a bigger role in driving greenhouse gas reductions:
government or companies? Why?”

Due this Friday by S5pm.



Climate change in the news




Climate change in the news

ENERGY

At $1.1 trillion, renewable energy investment matches fossil
fuels in 2022 for 1st time: BloombergNEF

The hydrogen sector received least boost at $1.1 billion but the sector grew the fastest, tripling investment every year

)
@ o @ @ C_j‘ NEXTNEWS > Global investment in energy transition by country, 2021

By Seema Prasad

Published: Friday 27 January 2023 $ billion
s _ l 200 Renewable energy
The amount of investment in cleaner energy technology in 2022 was $1.1 trillion, a study by the United States | - ST—
organisation noted. This came despite an uptick in spending on fossil fuels as many regions focused their cemany | [ 7
x - . ) ) u Electrified transport
attention on energy security, it added. united kingdom [ 31
o e o - u Electrified heat
Investment towards energy transition grew by $261 billion from the previous year — a 31 per cent increase France [ 27
from 2021. But the investment in fossil fuels was also simultaneously up $214 billion over 2021 levels. Japan | ] 28 o
India [ 14 = Hydrogen
Other than nuclear power, which did not see much growth in the last year, all the other sectors surpassed Korea 18 15
record levels of investment. Electrified heat received $64 billion, energy storage investment reached $15.7 (Rep:t’"c: i
razi 12
billion and carbon capture and storage hit $6.4 billion, the findings in the report showed. | ®Susianatie masals
Spain "

The hydrogen sector received the least boost at $1.1 billion but the sector grew the fastest, tripling
investment every year.

Source: BloombergNEF
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Greenhouse gases
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Measuring different GHGs

Components of
absorption

Chemical structure determines the absorption
properties of gases
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Source: Timma, Dace & Knudsen, Energies, MDPI, 2020

Different greenhouse gases have different “global warming potential”. To account
for this, total emissions are usually measured in “COZ-equivaIents”

climatescience.org



Annual GHG emissions are increasing

Total greenhouse gas emissions

Greenhouse gas emissions' are measured in carbon dioxide-equivalents (COzeq)? .
Emissions from land use change — which can be positive or negative — are taken into account.

World
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Source: Our World in Data based on Climate Analysis Indicators Tool (CAIT).
OurWorldInData.org/co2-and-other-greenhouse-gas-emissions « CC BY

But how do we measure this accurately? And why does it matter?



How can we measure the GHG emissions from all these
different sources?

World Greenhouse Gas Emissions in 2016
Total: 49.4 GtCO,e

Sector End Use/Activity

Road 1.9%

SRR 4.3%

Buildings 17.5%

Electricity

& heat 0-4%

Unallocated fuel
combustion 7.8%

ENERGY ——-

Iron & steel 7.2%

Chemical &

petrochemical 5.8%

Other industry
(including the ~ 12:3%
agriculture energy)

Fossil fuels 5.6%

Source: Greenhouse gas emissions on Climate Watch. Availoble ot: https./www.climatewatchdata.org



“Bottom-up” Approach

Amount of certain activity Average amount of
done or material multiplied by emissions expected from
produced that activity/production
e.g.
100 tonnes of steel produced times 1.85 metric tons CO2 per tonne of steel = 185 tons CO2

Full calculations: https://www.pca.state.mn.us/business-with-us/greenhouse-gas-emissions-calculations



Includes sources and sinks

ACS:

CO; carbon (GtC yr)
»® A N O N » O @




International guidelines for the bottom up approach

2006 IPCC Guidelines for
National Greenhouse Gas

Inventories

Uncertainty

* Basic approach

¢ International
emission factors

* Highest level of
uncertainty

* Intermediate approach
* Natlonal emission factors
* Reduces level of uncertainty

Highest level of detail

-
T' 3 * Facility spacific emission factors
le r * Mass and energy balances

® Lowest level of uncertainty

Figure 1: Different calculation methods [31]

Detail & complexity



IPCC guidelines for data difficulties

e Filling gaps in periodic data: Gaps in the time series will exist when data are available at less than annual
frequency. For example, time consuming and expensive surveys relating to natural resources - such as
national forest inventories - are compiled at intervals of every fifth or tenth year. Time series data may need
to be inferred to compile a complete annual estimate for the years between surveys, and for fore- and back-
casts (e.g., where estimates are needed for 1990 — 2004 and survey data are only available for 1995 and
2000). Chapter 5, Time Series Consistency, provides details on splicing and extrapolation methods to fill
these gaps.

e Time series revision: In order to meet deadlines, statistical organisations may use modelling and
assumptions to complete the most recent year of their estimates. These estimates are then refined the
following year when all the data have been processed. Data may have been subject to further revision of
historic data to correct errors or to update new methodologies. It is important that the inventory compiler
look for these changes in the source data time series and integrate them into the inventory. Chapter 5 of this
Volume contains more guidance on this issue.

e Incorporating improved data: While the ability of countries to collect data generally improves over time
so they can implement higher tier methods, the data may not necessarily be suitable for earlier years for the
higher tiers. For example when direct sampling and measurement programs are introduced there may be
inconsistencies in the time series as the new program cannot measure past conditions. Sometimes this can be
addressed if the new data are sufficiently detailed (e.g., if emission factors for modern abated plant can be
distinguished from those of older unabated plant) and the historic activity data can be stratified using expert
judgement or surrogate data. Chapter 5 provides more details on methods of incorporating improved data
consistently across a time series.



IPCC guidelines for data difficulties

e Compensating for deteriorating data: Splicing techniques, as described in Chapter 5 on Time Series
Consistency, can be used to manage data sets that have deteriorated over time. Deterioration can occur as
the result of changing priorities within governments, economic restructuring, or diminishing resources. For
example, some countries with economies in transition no longer collect certain data sets that were available
in the base year, or these data sets may contain different definitions, classifications and levels of aggregation.
The international data sources discussed in the activity data section (see Section 2.2.5) may provide another
source of relevant activity data.

e Incomplete coverage: When data do not fully represent the whole country, e.g., measurements for 3 of 10
plants or survey data of the agricultural activity for 80 percent of the country, then the data can still be used
but needs to be combined with other data to calculate a national estimate. In these cases expert judgement
(see Section 2.2 above for details) or the combination of these data with other data sets (surrogate or exact
data) can be used to calculate a national total. In some cases survey or census data are collected in a rolling
national programme that samples different provinces or sub-sectors yearly with a repeat cycle that builds a
complete data set after a period of years. It is recommended that, bearing in mind that time series
consistency, assumptions made in one year must also apply to the other years, and that data providers be
requested to compute representative yearly data with a complete coverage.



“Top down” approach

e Measure emissions directly, rather than relying on estimates based on
activities

e Recent technological shifts have made this more feasible, on a local and
global scale



Spectroscopy

“To study the makeup of the atmosphere, scientists collect some air in a container and then shine what looks like a laser through the

sample. When measuring the heat-trapping greenhouse gases that are causing climate change, such as carbon dioxide and methane,
the "laser's" beam is made of infrared light, which has a slightly longer wavelength than the visible light our eyes can see.

“The reason these are greenhouse gases is because they absorb infrared,” Kroll says, meaning they trap heat energy that would
otherwise leave the Earth as infrared light. “And you can use that absorption to measure them.”

” WHAT IS SPECTROSCOPY?

Radiation Type Radlo Microwave Infrared Visible Uvamlel X-ray Gamma ray
Wavelength / m 102 10% 0.5x10® 1010 10712

- H | i f o "‘Q’ w @

Buildings Humans Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nuclei

104 10° 10" 10'8 10"® 10" 10%°

https://climate.mit.edu/ask-mit/how-are-gases-atmosphere-analyzed-and-measured


https://climate.mit.edu/ask-mit/how-do-greenhouse-gases-trap-heat-atmosphere

Remote Sensing

REMOTE
i i SENSING



http://www.youtube.com/watch?v=F2mQ6fJSxRY

“Hyperspectral” satellites

Hyperspectral Imaging Technology
Collect data across many
wavelengths, making it possible to

do remote spectroscopy.
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Copyright © 2014 Boeing. All rights reserved.



Eye from the Sky: Satellites to
pinpoint greenhouse emissions
and air pollution S

By Aditya Chaturvedi- 07/29/2019 9 Minutes Read

Technological advancements like miniaturization of sensors, high-speed data
transfer, and enhanced storage capabilities have led to a new wave of satellites
specially built for tracking pollution and pinpointing sources of emissions.

According to the Air Quality in Europe report published in 2018 by the European Environment Agency (EEA), 19 EU
Member States recorded nitrogen dioxide concentration above the annual permissible limit. Imagery from Sentinel-SP

NASA image shows how carbon dioxide shifts



Pros and Cons of Bottom up and Top Down

So which is better, bottom-up or top-down estimates?

A bottom-up estimate can provide significant insight into the specific source of emissions and importantly what specific actions can be

taken to reduce emissions.

) A top-down estimate can provide insight on unexpected and in many cases very significant leaks, which cannot be identified from a
bottom-up approach.
° A bottom-up estimate is more likely to take into account long-term conditions and variations, rather than a top-down “snapshot” in time.

e A top-down estimate can give an accurate snapshot of emissions which might be missed by incorrect assumptions in a bottom-up

approach.

processecology.com



Do both methods produce the same answer?

The global SFg source inferred from long-term high
precision atmospheric measurements and its
comparison with emission inventories

I. Levin', T. Naegler', R. Heinz', D. Osusko', E. Cuevas?, A. Engel3, J. Iimberger’, R. L. Langenfelds?, B. Neininger5, C. v. Rohden’,
L. P. Steele?, R. WellerS, D. E. Worthy’, and S. A. Zimov8

Tinstitut far Umweltphysik, Universitat Heidelberg, INF 229, 69120 Heidelberg, Germany

2Centro de Investigacion Atmosférica de Izafa, Instituto Nacional de Meteorologia (INM), C/La Marina, 20, Planta 6, 38071 Santa Cruz de
Tenerife, Spain

3Institut fur Atmosphare und Umwelt, J. W. Goethe Universitat Frankfurt, Altenhoferallee 1, 60438 Frankfurt/Main, Germany

“4Centre for Australlan Weather and Climate Research / CSIRO Marine and Atmospheric Research (CMAR), Private Bag No. 1, Aspendale, Victoria
3195, Australia

SMetAlIr AG, Flugplatz, 8915 Hausen am Albis, Switzerland

SAlfred Wegener Institut fur Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany

7Environment Canada, Climate Research Division/CCMR, 4905 Dufferin St., Toronto, ON M3H 5T4, Canada

8North East Section of the Russian Academy of Sciences, P.O. Box 18, Cherskii, Republic of Sakha (Yakutia), Russia

Received: 01 Dec 2009 - Discussion started: 11 Dec 2009 - Revised: 05 Mar 2010 - Accepted: 08 Mar 2010 - Published: 18 Mar 2010
Abstract. Emissions of sulphur hexafluoride (SFg), one of the strongest greenhouse gases on a per molecule basis, are targeted to
be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (estimated as 800 to 3200 years), the
accumulation of SFg in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of
globally distributed high-precision SFg observations shows an increase in SFg abundance from near zero in the 1970s to a global
mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SFg
decreased after 1995, most likely due to SFg emission reductions in industrialised countries, but increased again after 1998. By
subtracting those emissions reported by Annex | countries to the United Nations Framework Convention of Climatic Change
(LINFCCC) from onir ohservation-inferred SF- saurce leaves a surprisingly large gan of more than 70-80% of non-renorfed SF-
emissions in the last decade. This suggests a strong under-estimation of emissions in Annex | countries and underlines the urgent
need for independent atmospheric verification of greenhouse gases emissions accounting.

Generally, no.

A review of bottom-up and top-down emission
estimates of hydrofluorocarbons (HFCs) in
different parts of the world

Hannah Flerlage *1 ©, =, Guus J.M. Velders " ¢, Jacob de Boer *

Show more

+ Add to Mendeley «3 Share 33 Cite

https://doi.org/10.1016/j.chemosphere.2021.131208 » Get rights and content »
Under a Creative Commons license » ® open access
Highlights

« Widening gap between global top-down derived and reported HFC emissions
is explored.

« Data inaccessibility and inaccurate emission factors challenge bottom-up
assessment.

» Non-uniform geographic domains in top-down studies hinder comparison.

» Availability of data and measurement station coverage are globally very
different.



Best methods will require a mix of both

e Knowing the emissions multiplier for different activities requires direct
measurement at some point

e Remote sensing can help to measure activities even if it can’t always
measure emissions directly



ML opportunities in measuring emissions

Filling in gaps for bottom up estimates

' [
Abstract : E

1
Understanding the environmental implications of activated carbon (AC) produced from diverse biomass : “
feedstocks is critical for biomass screening and process optimization for sustainability. Many studies have Biomass : GHG
developed Life Cycle Assessment (LCA) for biomass-derived AC. However, most of them either focused on Characterization 1
individual biomass species with differing process conditions or compared multiple biomass feedstocks without ‘ !
investigating the impacts of feedstocks and process variations. Developing LCA for AC from diverse biomass is 5 |. Energy :
time-consuming and challenging due to the lack of process data (e.g., energy and mass balance). This study Process Operational mlll,( 0. 'f"?\T/R Consumpllon
addresses these knowledge gaps by developing a modeling framework that integrates artificial neural network Conditions P
(ANN), a machine learning approach, and kinetic-based process simulation. The integrated framework is able '|0\:—()|| ocn,
to generate Life Cycle Inventory data of AC produced from 73 different types of woody biomass with 250 o
characterization data samples. The results show large variations in energy consumption and GHG emissions [ T|
across different biomass species (43.4-277 M]/kg AC and 3.96-22.0 kg CO3-eq/kg AC). The sensitivity analysis 1,co” S ocu,
indicates that biomass composition (e.g., hydrogen and oxygen content) and process operational conditions OR
(e.g., activation temperature) have large impacts on energy consumption and GHG emissions associated with Process Simulation Kinetic Model
AC production. e e

Product
Composition

https://pubs.acs.org/doi/full/10.1021/acssuschemeng.9b06522



ML opportunities in measuring emissions

Building Energy Model

Making bottom-up estimates more precise

RESEARCH AND ANALYSIS | ) OpenAccess @ (®

Machine learning based modeling of households: A regionalized
bottom-up approach to investigate consumption-induced
environmental impacts

Andreas Froemelt )24 René Buffat, Stefanie Hellweg

First published: 24 November 2019 | https://doi.org/10.1111/jiec.12969 | Citations: 25

Funding information:

Thisre

rch projec
s Competence Ce or En
rastructure). Further funding

financially supported by the Swiss Inn

Scie

number: P2EZP2_184267).

Editor Managing Review: Richard Wood

https://pubs.acs.org/doi/full/10.1021/acssuschemeng.9b06522

(Buffat et al., 2017)

Physically based model
providing:

space heating demand and hot
water production for individual
residential buildings

Consumption Model

(Froemelt, Diirrenmatt, & Hellweg, 2018)

Data-driven model using data mining
techniques providing:

consumption profiles for archetypes
(expenditures and demanded
quantities for food, consumables,
goods and services)

Mobility Model

(Bauer et al., 2016)

Model using simulation results of an
agent-based framework providing:

kilometers driven by car, buses,
trains, trams, etc. for simulated
agents

Energy
demand
per building

— / VNN
bk Ak b A A

Random sampling
among lifestyle-
archetypes based on
probabilities computed
by a Random-Forest-
Classifier

pe K Arcr‘\é-typeL

Mobility
demand
per agent

Residential
energy demand
per household

Information

area, etc.

Piif

on location s X
of residence, Statistics of the Population
apartment and Households of

Switzerland (STATPOP)

Swisé Buildinés and

Dwellings Statistics (BDS)

Total consumption demand
per household

Environmental Assessment
(Mainly based on Froemelt, Diirrenmatt, & Hellweg, 2018)

Hybrid life cycle assessment providing

Mobility
demand per
household

Information

on person
characteristics
and location

Assignment of
agents to house-
hold members




ML opportunities in measuring emissions

Using novel data sources to estimate energy/activity

Webcrawling and machine learning as a new approach for
the spatial distribution of atmospheric emissions

Susana Lopez-Aparicio [E). Henrik Grythe, Matthias Vogt, Matthew Pierce, Islen Vallejo

Published: July 16, 2018 « https:/doi.org/10.1371/journal.pone.0200650

o ““
¥

Abstract Abstract
Inirodixction In this study we apply two methods for data collection that are relatively new in the field of
Methods atmospheric science. The two developed methods are designed to collect essential geo-
localized information to be used as input data for a high resolution emission inventory for
residential wood combustion (RWC). The first method is a webcrawler that extracts openly
Conclusions online available real estate data in a ic way, and them for analysis.
The webcrawler reads online Norwegian real estate advertisements and it collects the geo-
position of the dwellings. Dwellings are classified according to the type (e.g., apartment,
Acknowledgments detached house) they belong to and the heating systems they are equipped with. The second
method is a model trained for image recognition and classification based on machine learning

Results and discussion

Supporting information

References techniques. The images from the real estate advertisements are collected and processed to
— identify wood burning i i which are lly classified ding to the three
Reader Comments classes used in official statistics, i.e., open firepl: . stoves produced before 1998 and stoves
Figures produced after 1998. The model recognizes and classifies the wood appli with a pi
of 81%, 85% and 91% for open fireplaces, old stoves and new stoves, respectively. Emission
factors are heavily d dent on technology and this inf ion is therefore essential for
determining accurate emissi The collected data are pared with existing information

from the statistical register at county and national level in Norway. The comparison shows good
agreement for the proportion of residential heating systems between the webcrawled data and
the official statistics. The high resolution and level of detail of the extracted data show the value
of open data to improve emission inventories. With the increased amount and availability of
data, the techniques presented here add significant value to emission accuracy and potential

1s should also be across all ion sectors.




ML opportunities in measuring emissions

Analyzing satellite images to track activity and directly measure emissions

CLIMATE TRACE

INDEPENDENT GREENHOUSE
GAS EMISSIONS TRACKING

Using satellites, direct measurements, and
artificial intelligence, we build models that
estimate emissions right at the source




Paper Deep Dive

Detecting Methane Plumes using PRISMA: Deep
Learning Model and Data Augmentation

Alexis Groshenry Clement Giron
Kayrros SAS, Paris, France Kayrros SAS, Paris, France
ENS Paris-Saclay, Paris, France c.giron@kayrros.com

a.groshenry@kayrros.com

Thomas Lauvaux
University of Reims Champagne Ardenne, GSMA, UMR 7331, France
thomas.lauvaux@univ-reims.fr

Alexandre d’Aspremont Thibaud Ehret
CNRS, DI, Ecole Normale Supérieure ENS Paris-Saclay, Paris, France
Kayrros SAS, Paris, France thibaud.ehret@ens-paris-saclay.fr

aspremon@ens. fr

https://arxiv.org/pdf/2211.15429.pdf



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

If successful, how could this system be useful?



Abstract

The new generation of hyperspectral imagers, such as PRISMA, has improved
significantly our detection capability of methane (CH,) plumes from space at high
spatial resolution (~30m). We present here a complete framework to identify CH,
plumes using images from the PRISMA satellite mission and a deep learning model
able to detect plumes over large areas. To compensate for the relative scarcity of
PRISMA images, we trained our model by transposing high resolution plumes from
Sentinel-2 to PRISMA. Our methodology thus avoids computationally expensive
synthetic plume generation from Large Eddy Simulations by generating a broad and
realistic training database, and paves the way for large-scale detection of methane
plumes using future hyperspectral sensors (EnMAP, EMIT, CarbonMapper).



PRlSMA Satelitte Looking in different spectral bands:

e Launched on March 22nd, 2019 by the
Italian Space Agency

e Hosts a high-resolution spectrometer and
a camera

e [ntended uses: topsoil measurements,
mapping of raw materials, forest
resources and ecosystem biodiversity
assessment, agricultural crop monitoring,
snow and ice surface property mapping
and inland/coastal water quality
assessment, etc.

https://www.sciencedirect.com/science/article/pii/S0034425721002170



Methane detection

PRISMA has good shortwave infrared (1 to 2.5um) coverage, which is where

methane absorption is significant.

By knowing the radiative properties of methane, the concentration of it in the
column of atmosphere between the satellite’s sensor and a pixel on the ground

can be calculated.
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Methane plumes

e Large methane clouds released
from a single source

e Come from oil and gas operations,
landfills, etc.

e Potent polluters and easier to
detect and respond to than more
diffuse sources

Methane plume over Lakhodair landfill in
Lahore, Pakistan, spotted on July 1, 2021.
GHGSat/Bloomberg



Goal

e Do image segmentation to detect and determine the extent of a plume

Figure 1: Examples of automatically-detected XCH4 plumes including XCH, concentration maps
(left column), the probability map pl‘LdlLlLd by the network (second u)lunm) hysteresis thresholding
(third column), and manually labeled ground truth (right column)




Method

@
n
¥z f@x"WJ — Y Artificial neural network that takes in an image of
methane concentration and outputs a binary
image of plume/not plume.
xn
(b) Input 15t hidden 2nd hidden Output
layer layer layer layer

y,=f( x;w,) yk:f[Zx,w,) y,=f[2kak}

Vieira et al.



Network Architecture

Method

Contractingpath| Expansive path

input
image
tile

output
| segmentation
i 4 map

=»conv 3x3, ReLU
= copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

2.3.2 Model

The detection step is performed using a U-Net architecture, which is one of the most popular
architecture for segmentation [14]. The network is designed to predict a probability map by applying
a normalized exponential function (softmax) activation to the output of the final convolutional layer.
Each pixel is thus assigned a probability of belonging to a XCH; plume. This map is then converted
into a binary mask by applying a hysteresis thresholding with a low threshold and a large threshold.
This approach allows us to detect the whole plume and not only the area close to the source exhibiting
VITAlab the highest XCH, concentrations. In order to validate the artificial plume generation technique, we



Data problem!

PRISMA is new and hasn’t released very many images yet, especially ones that
contain methane plumes. Deep neural networks need a lot of data to learn all

their parameters!

“Our study is based on 40 PRISMA images containing a total of 75 plumes of
methane. This hardly describes the great diversity of plumes (i.e. size, intensity,
morphology) and associated background (e.g. different levels of homogeneity,
variable amount of noise, presence of clouds, roads, or buildings, types of
terrain).”



Data problem!

Methane plumes can be diverse and other
things in the atmosphere/ground can look like
methane.

“We also observe the presence of false
positives in the retrieval results. False
positives are elements in the scene with a
high response but do not correspond to
higher XCH4 concentrations. False positives
are caused by aerosols or heterogeneous
surface properties with strong specitral
signatures [15] similar to methane, such as
hydrocarbon paints on buildings or roads,
mountain ridges/slopes or sand dunes.”




Solutions

0.28

e Train on simulated data?

“Gaussian plume simulations rely on a simple
modelling of gas dispersion, but the final plume

has a relatively naive shape, not representative

of complex spatial structures observed from

space. To simulate more complex structures,  r mio.z
Large Eddy Simulations (LES) rely on an

accurate physical modelling of the atmospheric
dispersion and turbulence to generate realistic
plumes. But these models remain

computationally expensive”
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Solutions

e Train on plumes seen from a different (less good) satellite:

Sentinel-2 methane map Extract plume from manual Histogram specification
with visually identified label (N pixels) & random translation / rotation
plume (red box)

PRISMA image with no

(essentially photoshop them onto regular Gratiane shife
PRISMA images)

®—

Training image with real

background, real plume

shape, but fake methane
concentrations



Solutions

e Train a full model using data from another satellite, then train
further on PRISMA images:

Input Layer

Dan Rose Al

New layers are put in and trained
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Output Layer

“Transfer” learning



Evaluation

e Precision
e Recall

F1-score

precision - recall

precision + recall

ACTUAL

PREDICTED

POSITIVE

NEGATIVE

POSITIVES

NEGATIVE

H
TRUE POSITIVES

A\

FALSE NEGATIVE:

FALSE POSITIVES

relevant elements

false negatives

retrieved elements

How many retrieved
items are relevant?

Precision = ———

true negatives

How many relevant
items are retrieved?

Recall = —



Evaluation

e Intersection Over Union (loU)
e 1is best

Area of Overlap

loU =

Area of Union

PylmageSearch



Results



Results

Table 1: Models performance comparison for automatic methane plume detection

| detection metrics | segmentation metrics
precision | recall | fl-score | IoU mloU
Transfer Learning 0.28 0.53 0.37 0.21 0.13
Plumes Transfer 0.88 0.42 0.57 0.61 0.19

In table[1] we make a quantitative comparison between the performance of the model trained from
scratch on artificial data, and the model obtained by transfer learning from pre-trained weights learnt
on Sentinel-2 images. For both approaches, we consider the hysteresis thresholds producing the best
IoU. The detection metrics are computed on a mask basis, a mask being considered a true positive if it
intersects a ground-truth mask. The model trained from scratch on synthetic plumes outperforms the
model by transfer learning on both the detection and segmentation tasks. The latter notably detects a
large number of false positives, leading to a poor precision and IoU even if it reaches a slightly better
recall. We also observe a drop when passing from the IoU to the mean IoU (mloU), which can be
explained by the fact that the model often fails to detect the smallest plumes.

Using the photoshopped images was best!



Conclusion

In this study, we presented a full processing pipeline for the identification of methane plumes in
hyperspectral images from PRISMA. It makes use of classic methods for the spectral recalibration
and methane concentrations retrieval. We also propose an automatic detection approach based on a
CNN that is trained from scratch using a plume transfer method to generate training samples from
methane plumes in Sentinel-2 images. This novel approach allows to train a dedicated model for a
new remote sensing technology, while mostly relying on data from previous satellites.



Summary

Total greenhouse gas emissions
Greenhouse gas emissions' are measured in carbon dioxide-equivalents (COz2eq)? .
Emissions from land use change — which can be positive or negative — are taken into account.

World
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