ML4CC: Lecture 4

Sit with your discussion groups (same as last time)!



Assignments reminder

Keep doing your weekly PMIRO+Q
Your first coding assignment was due at 8am.

Your second coding assignment will be posted after class and is due Feb 27
before the start of class.



Recap of previous paper

P: Need to be able to map building damage after a disaster

M: Train a convolutional neural network to classify building damage using an
existing dataset of satellite imagery

I: Vary the loss function and the type of inputs provided; also applied a “saliency”
method

R: Ordinal cross entropy loss with all three inputs (pre/post image with disaster
type) performs best

O: The dataset was filtered to not include small buildings and was subsampled to
be balanced across classes so it is unclear how useful it is in the real world



Climate Change in the News

White House Failed to Comply
With Court Order, Judge Rules

The federal judge in Rhode Island said the Trump administration
had failed to comply with his order unfreezing billions of dollars
in federal grants.

£ sharetutiartice 2> []

Judge McConnell had previously ordered the White House to
unfreeze federal funds locked up by the White House budget office.
A memo from that office had demanded that billions of dollars in
grants be held back until they were determined to be in compliance
with President Trump’s priorities and ideological agenda.

On Friday, 22 Democratic attorneys general went to Judge
McConnell to accuse the White House of failing to comply with his
earlier order. The Justice Department responded in a filing on
Sunday that money for clean energy projects and transportation
infrastructure, allocated to states by the Inflation Reduction Act
and the bipartisan infrastructure bill, was exempt from the initial
order because it had been paused under a different memo.

Judge McConnell’s ruling on Monday explicitly rejected that
argument.

Automotive News
Inflation Reduction Act changes would threaten EV
investments, jobs in pro-Trump states

Hannah Lutz
Wed, February 12, 2025 at 7200 AMEST * 7 minread

-
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As President Donald Trump considers changes to the Inflation Reduction Act,

more than $100 billion in electric vehicle manufacturing investment and about

84,000 jobs are at stake in states he won in November's election.

Ninety percent — or $105 billion — of the EV manufacturing investment
announced since the passage of the act went to Republican-leaning states,

according to an Automotive News analysis of Atlas Public Policy data.

The most investment is slated for Georgia, North Carolina, South Carolina,
Michigan and Indiana — with more than $12.5 billion each. By comparison, just $11
billion of the announced investments went to states that voted for Democrat

Kamala Harris, Trump's opponent in the November election.

Some Republican members of Congress are pushing to keep the incentives to
bolster the economies of their districts. Many repeated a phrase that has
circulated in Republican lawmakers' recent discussions of the act: Refine the

law with a scalpel, not a sledgehammer.

Republican Rep. Buddy Carter of Georgia said the act spurs economic growth

that will make the U.S. competitive and secure.



Climate Change in the News

CLIMATE

India wants to embrace nuclear power.

Todoit, it’'ll need a lot of time and
money

y BY SIBIARASU
N Updated 10:10 PM EST, February 11, 2025 Share

BENGALURU, India (AP) — India wants more nuclear power, has pledged over $2 billion
toward research and will change laws to boost investment to do it.

The pledges were made by India’s finance minister earlier this month as part of a plan
to expand electricity generation and reduce emissions. Nuclear power is a way to make
electricity that doesn’t emit planet-warming gases, although it does create radioactive
waste. India is one of the world’s biggest emitters of planet-heating gases and over 75%
of its power is still generated by burning fossil fuels, mostly coal. India wants to install
100 gigawatts of nuclear power by 2047 — enough to power nearly 60 million Indian
homes a year.

Energy experts say that for the world to move away from carbon-polluting fuels like
coal, oil and gas, sources like nuclear that don’t rely on the sun and the wind — which
aren’t always available — are needed. But some are skeptical about India’s ambitions as
the country’s nuclear sector is still very small, and negative public perceptions about
the industry remain.



Paper 3 Discussion

Detailed Glacier Area Change Analysis in the
European Alps with Deep Learning

Codrut-Andrei Diaconu'? Jonathan L. Bamber??
codrut-andrei.diaconu@dlr.de j .bamber@tum.de
!German Aerospace Center (DLR) 2Technical University of Munich 3Uni\"Crsily of Bristol

Poster at NeurlPS - Tackling
Climate Change with Machine Absstvact
Learning workshop 2023

Glacier retreat is a key indicator of climate change and requires regular
updates of the glacier area. Recently, the release of a new inventory for the
European Alps showed that glaciers continued to retreat at about 1.3% a !
from 2003 to 2015. The outlines were produced by manually correcting the
results of a semi-automatic method applied to Sentinel-2 imagery. In this work
we develop a fully-automatic pipeline based on Deep Learning to investigate
the evolution of the glaciers in the Alps from 2015 to present (2023). After
outlier filtering, we provide individual estimates for around 1300 glaciers,
representing 87% of the glacierized area. Regionally we estimate an area loss
of -1.8% a ', with large variations between glaciers. Code and data are available
athttps://github.com/dcodrut/glacier_mapping_alps_tccml.



Attendance

Select one person from the group to be the attendance taker. Have them go to this
Google Form and enter the netlDs of all members of the group who are present.

https://forms.gle/SsipLSQjwQCneQvV9 (link is also in Brightspace under Syllabus
content)



https://forms.gle/SsipLSQjwQCneQvV9

Discussion Question 1

Explain what the authors say they are doing here, why they are doing it, and
whether or not you think it is a good idea.

Given that the resolution of Sentinel-2 data is 10m, we decided to use only the glaciers with an area

larger than 0.1 km?. Although this reduces the number of glaciers sampled (1646, i.e. about 37%), the
percentage of glacierized area covered 1s close to 95%. To facilitate further analyses, we additionally



Removing small glaciers

Getting rid of glaciers that are fewer than 10 pixels removes the majority of individual
glaciers.

But, because there are many large glaciers, it does not significantly impact the total
amount of glacier cover included in the data (~95%), which is arguably the more
important measure here.



Discussion Question 2

Explain what the authors say they are doing here, why they are doing it, and
whether or not you think it is a good idea.

A common criterion used to download optical data i1s by choosing the tile (i.e. 100km x 100km for
Sentinel-2) with the smallest percentage of cloud coverage for each region of interest. If we follow
this strategy and then compute the average cloud coverage per glacier (using the inventory outlines),
we obtain an average of 4%. However, if rather than restricting to one single tile we instead use the
least cloudy five tiles (centered on 01.09.2023 =+ 15 days) and then choose the best for each glacier
individually, we significantly reduce the cloud coverage to 0.1%. This is lower than the average in



Sentinel-2 Cloud Coverage
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Sentinel-2 satellite imagery
(top) comes with cloud
probability masks (bottom).

This lets you choose which
image date you want to use
based on which day has the
lowest cloud coverage



Sentinel-2 Cloud Coverage

(d) 2017 01 19

Kempineers and Soille

(e) 2017 08 07

It is possible (especially in
100km by 100km images) that
the least cloudy image overall
might not be the best for every
individual pixel.

Therefore they pick the best
image for each glacier
individually (out of the top 5
least cloudy)



Discussion Question 3

What loss function was used to train the model? Why is this appropriate for the
problem?



Loss function

Binary cross entropy loss

Binary segmentation (e.g. glacier vs not
glacier) can be understood as a binary
classification task for each pixel

TRUE CLASS
DISTIRBUTION

H(P*| P) = —Z:P_*I(L)' log‘P_(lﬂ'

PREDICTED CLASS
DISTIRBUTION

Chu et al




Discussion Question 4

What are the dimensions of the input to the model?



256

256

Input

256x256x6

Elevation
SWIR

NIR

B
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performing in [8], with a relatively smaller model size compared to the other methods evaluated. We
extend the input from three to six channels, to accommodate the following inputs:

* five Sentinel-2 bands: blue (B2), green (B3), red (B4), NIR (B8) and SWIR (B12), which
we found the most informative;

* surface elevation, obtained from NASADEM]17] (30m resolution) and processed using
the Open Global Glacier Model[18]. The surface elevation should help for debris-cover on
glacie, Central Europe being one of the regions with the highest percentage of debris
cover[19].

Model training. We train the model to predict the probability that each pixel is glacier or not, using
patches of 256x256 pixels (i.e. 2.56x2.56 km). Given that we apply the model only on glacierized

Larger images are cut into smaller ones



Discussion Question 5

What was done to help balance the data? How does it help? Do you think it was a
good idea or not?



Centered images

patches of 256x256 pixels (i.e. 2.56x2.56 km). Given that we apply the model only on glacierized
regions, we sample patches only if the center is on the glacier, which also helps in balancing the two
classes. This implies that the model sees only the glaciers and a maximum buffer of 1.28km around,

T

Sampling mountain images at random may lead to a lot of “not glacier” pixels. Centering images around glaciers
ensures a similar mix of glacier and non-glacier.

Sometimes such centering would be “cheating” because at run time you may not know where the glaciers are. But the
goal here is to track the size of glaciers that were already inventoried, so it is acceptable to use that information.



Discussion Question 6
Why will the errors “cancel out” here?

Area (change) estimation. Given the significant volume loss observed over the 2000-2019 perlod[SU
with a mean elevation change of -1.02 £ 0.21 m a~!, we can assume that glaciers in this region do
not grow over the 2015-2023 period. This allows us to extract the changes in the areas by applying
the model for each glacier but only for the pixels within the inventory outlines, thus excluding the
predictions outside these. However, we do not use the areas from the inventory as the reference value
but the predicted ones such that, if the model makes systematic errors, they will cancel out, as in
the case illustrated in Figure|1| Therefore, for each glacier, we calculate the area change per year as



The model should underestimate in the same way across
time

__ outlineinventory || | 1km
2016 ’
prediction

Here the model (red) underestimates N
the size of the glacier compared to il ¥o 5 ,
how it was labeled in 2016 (green). DAy W

Comparing the model’s output in
2023 to the labeled data from 2016
would overestimate the amount of
glacier melt. But using the model’s
estimates at both time points does
not.




Discussion Question 7

Which does the model do better at: labeling glacier pixels as glaciers or not
labeling non-glacier pixels as glaciers?



Precision and Recall

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy 10U Precision Recall Fl1

r_l 1855 349 0.953 0.794 0.875 0.896 0.878
r2 1321 234 0.955 0.862 0.924 0.926 0.923
r3 1084 184 0.960 0.879 0.931 0.937 0.933
r_4 2146 406 0.964 0.836 0916 0.903 0.905
o} 2301 437 0.951 0.769 0.951 0.796 0.857

pEto: 096+0.01 083£0.05)092+0.03 0.89=+£0.06| 0.90=+0.03

Precision is slightly higher than recall, so
the model is a slightly better at not
labeling non-glaciers as glaciers (though
both numbers are high).

relevant elements

false negatives

retrieved elements

How many retrieved
items are relevant?

Precision = ———

true negatives

How many relevant
items are retrieved?

Recall = —



Precision and Recall

Follow-up Q: what are the rows in this table?

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy 10U Precision Recall Fl1

r_l 1855 349 0.953 0.794 0.875 0.896 0.878
r2 1321 234 0.955 0.862 0.924 0.926 0.923
r3 1084 184 0.960 0.879 0.931 0.937 0.933
r_4 2146 406 0.964 0.836 0916 0.903 0.905
o} 2301 437 0.951 0.769 0.951 0.796 0.857

pEto: 096+0.01 083£0.05)092+0.03 0.89=+£0.06| 0.90=+0.03

Precision is slightly higher than recall, so
the model is a slightly better at not
labeling non-glaciers as glaciers (though
both numbers are high).

relevant elements

false negatives true negatives

retrieved elements

How many retrieved How many relevant
items are relevant? items are retrieved?
Precision = ——— Recall = ——




Precision and Recall

Follow-up Q: what are the rows in this table?

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy j(0]8) Precision Recall Fl1

r_1 1855 349 0.953 0.794 0.875 0.896 0.878

r2 1321 234 0.955 0.862 0.924 0.926 0.923

r3 1084 184 0.960 0.879 0.931 0.937 0.933

r 4 2146 406 0.964 0.836 0916 0.903 0.905

o} 2301 437 0.951 0.769 0.951 0.796 0.857
pEto: 096+0.01 0.83+0.05(092+0.03 0.89+0.06| 0.90=+0.03

longitude

\

percentage of total glacierized area

20% 20% 20% 20% 20%
fold 1 fold 2 fold 3 fold 4 fold 5

aggregated test predictions (n = 1633)

Figure Al: Cross-validation scheme with a geographic split



Discussion Question 8

Share what questions you wrote in your PMIRO+Q and decide as a group what
you'd like to ask.



Update your PMIRO+Q

Submit a second file to the Brightspace assignment (don’t overwrite the original):

It should:
Update your PMIRO as needed

Answer your own Q

You can be talking with your group during this!



15 min break



Lecture

Climate content: weather and climate simulation models

Machine learning content: generative models, representation learning,
self-supervised learning



Shared Socio-Economic Pathways (SSPs)

5 narrative scenarios, representing
different approaches and resulting
challenges

SSPs include social, economic, and
governmental forces and challenges
Provide a framework for making
predictions of possible futures

Socio-economic
challenges for mitigation

4

X SSP 5: * SSP 3:
(Mit. Challenges Dominate) (High Challenges)
Fossil-fueled Regional Rivalry
Development A Rocky Road
Taking the Highwa!
SRETIMY Y ssp 2:
(Intermediate Challenges)
Middle of the Road
% SSP1: X SSP4:
(Low Challenges) (Adapt. Challenges Dominate)
Sustainability Inequality
Taking the Green Road ARoad Divided

Socio-economic challenges
for adaptation

v

Fig. 1 Overview of SSPs

Narratives in O’Neill et al., 2016, Glob Env Change, online first)
SSP1: low challenges for mitigation
(resource efficiency) and adaptation
(rapid development)

SSP3: high challenges for mitigation
(regionalized energy / land policies)
and adaptation (slow development)
SSP4: low challenges for mitigation
(global high tech economy), high for
adapt. (regional low tech economies)
SSP5: high challenges for mitigation
(resource / fossil fuel intensive) and
low for adapt. (rapid development)



SSPs as possible futures

Global population
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Predicting temperature under different SSPs

GMST or GSAT warming relative to 1850-1900 (°C)

1995-2014
warming

GMST-|

GSAT
1850-1900

Historical global mean
surface temperatures

PAGES 2k reconstrugtion

1750

1800

Consolidaed GMST (Chapter|2

1850

1900

CO, emissions:

. <3 Peaking
Possible %  Halving
futures 0 Netzero

1950

2000

Today

95%

Assessed Very high
GSAT range
(Chapter 4) SSP5-8.5

5%

High
SSP3-7.0

Intermediate
SSP2-45

Low
SSP1-2.6

Very low
SSP1-1.9

2050 2100



Predicting precipitation under different SSPs

Monthly precipitation
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How do we make these predictions?

Climate simulation models!

A global climate model (GCM) is a complex mathematical
representation of the major climate components and their
interactions. The main climate system components treated in a
climate model are:

The atmospheric component, which simulates clouds
and aerosols, and plays a large role in transport of heat and
water around the globe.

The land surface component, which simulates surface
characteristics such as vegetation, snow cover, soil water,
rivers, and carbon storing.

The ocean component, which simulates current
movement and mixing, and biogeochemistry, since the ocean is
the dominant reservoir of heat and carbon in the climate
system.

The sea ice component, which modulates solar
radiation absorption and air-sea heat and water exchanges.

energy

stratus clouds
precipitation
evaporation

incoming solar

oul

transition from
solid to vapour

aerosols

SNow cover

tgoing heat
energy

evaporative

and heat energy
exchanges

cumulus
clouds

includes the atmosphere,
land, oceans, ice and biosphere

cirrus clouds  atmospheric
GCM
atmosphere
(temperature, winds
and precipitation)
stratus clouds
evaporation

atmospheric model layers

Washington, et al., 2008

gfdl.noaa.gov



Climate models

Climate models divide the globe into a three-dimensional grid of cells representing specific geographic
locations and elevations. Each of the components (atmosphere, land surface, ocean, and sea ice) has
equations calculated on the global grid for a set of climate variables such as temperature.

The spatial resolution of the grid depends on the the amount of
computing power available.



Climate models

Observed
http//www.prismclimate.org

Current model resolution (200km) compared to
high-resolution models (50km and 25km) and observed data

Observed data provided by PRISM Climate Group, Oregon State University.

Better spatial resolution leads to more accurate models.



Climate models are compute intensive!

“A global climate model typically
contains enough computer code to fill
18,000 pages of printed text; it will have
taken hundreds of scientists many years
to build and improve; and it can require
a supercomputer the size of a tennis
court to run.”

e
=2 Met Office

2-3 years of simulation time can take 1 The Met Office Hadley Centre’s three new

Cray XC40 supercomputers, for example, are
day to run. together capable of 14,000 trillion

calculations a second. The timelapse video

below shows the third of these

supercomputers being installed in 2017.
https://www.carbonbrief.org/qa-how

-do-climate-models-work/



http://www.youtube.com/watch?v=q4uKS_wcfow
https://www.carbonbrief.org/qa-how-do-climate-models-work/
https://www.carbonbrief.org/qa-how-do-climate-models-work/

Physical simulations also power weather predictions

Weather forecast modeling

Timestep 5-10 minutes
Grid spacing 10-20 km

Variables at

the surface:
Temperature
Humidity
Pressure
Moisture fluxes
Heat fluxes
Radiation fluxes

K. Cantner, AGI

Also use a 3-D grid

veicaiexcnange - OMaller timestep: ~5 minutes for
between levels

weather, closer to 30 min to an hour for
climate.

Horizontal exchange
between columns

Much shorter forecasting window:

0 |

weeks instead of a century

Variables in the

atmospheric column:
Wind vectors
Humidity
Clouds
Temperature
Height
Precipitation
Aerosols



Climate and weather are different

Climate prediction can be
successful over long time
scales even as weather
prediction on short time
scales is difficult.

WEATHER CLIMATE

WHAT YOU GET

CONDITIONS OF THE
ATMOSPHERE OVER A SHORT
PERIOD OF TIME

This is because climate
variables are averages over
space and time.

CAN CHANGE WITHIN
MINUTES OR HOURS

Y, \4
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Soturday Sunday




Limits to climate prediction
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How TWO WEATHER PATTERNS DIVERGE. From nearly the same starting

point, Edward Lorenz saw his computer weather produce patterns that

grew farther and farther apart until all resemblance disappeared. (From
Lorenz's 1961 printouts.)

The climate system is a
“chaotic system” meaning that
small initial differences can
lead to large changes later.

Need to be able to run many
simulations with different
initial parameters to see the
distribution of possible
outcomes.



How can machine learning help?
Climate and Weather Model Emulators: Replace the physical simulation with a
learned machine learning model that is faster to run (your homework)

Hybrid Models: Help run higher resolution models by learning to upsample low
resolution values (the paper)



Climate model emulators

Replace the physical simulation with a machine learning model

Climate models
(Earth system models)

(@™ %, Climate emulators

% E . i
,quilibnum climate s (Reduced complexity models)
" 9:0al-scale pargmyerc " iVity,
"ameters, etc. \ te:,%
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Weather model emulators are performing well as of late

a) Input weather state b) Predict the next state ¢) Roll out a forecast

GraphCast: Al model for faster and
more accurate global weather
forecasting

14 NOVEMBER 2023

Remi Lam on behalf of the GraphCast team r. The model then predicts the weather 6 hours in the future.

i forward in 6-hour increments to provide state-of-the-art

Our state-of-the-art model delivers 10-day weather predictions at

unprecedented accuracy in under one minute . .
3 | GraphCast is trained on decades of

historical weather data to learn a
model of the cause and effect
relationships that govern how
Earth’s weather evolves, from the
present into the future.



Hybrid climate models

Spatial resolution relevant for

GCM spatial resolution . : )
climate impact studies

34°8

= RN Downscale

36°

37°

5 7 9 1 13
Temperature (°C)

Statistical Downscaling: Learn a model that can project poor resolution information into a
higher resolution (“downscaling” = going to a lower spatial scale, “statistical” = learned
from data). Also known as “super-resolution”.

This is a “generative” modeling problem
NARCLIM



Generative models

* Discriminative Model * Generative Model
2 p(ylx) p(z.y)
£ H
g'/.- UTe g}?‘ --------- y=0

Google

information flow

Discriminative: model learns to map a high-dimensional input to a lower dimensional label

Generative: model learns to create a high-dimensional output that is a sample pulled from the
distribution learned from training data



Spatial resolution relevant for

GCM spatial resolution : A 3
climate impact studies

P Downscale
36° | —_———
) ! ? T:mperature (li:)
lf our geners'tl\;]e mo?etl_ 'S §upposedf ..Is the “vorticity spatial fields”
o produce high resolution images o — L
P 9 9 (spinning atmospheric wind patterns)

climate variables, we need to be able

to answer questions like... on the right a close match to the

image on the left?



How do we compare two images?

cns.nyu.edu/~lcv/ssim/



How do we compare two images?

We could use pixelwise
mean-squared error:

MSE = ——ZZ (i,9) = Y (i,5))*

1 =1 j=1

where m,n are spatial dimensions

cns.nyu.edu/~lcv/ssim/



How do we compare two images?

We could use pixelwise
mean-squared error:

MSE———ZZ (i,5) = Y (i,5))?

where m,n are spatial dimensions
Original, MSE = 0; SM 1

MSE = 144, SSIM = 0.988 MSE = 144, SSIM = .913
' i

But MSE doesn’t
necessarily capture
what we care about!

MSE = 144, SSIM = 0.840

MSE = 144, SSIM = 0.694 MSE = 142, SSIM = 0.662

cns.nyu.edu/~lcv/ssim/



Representation Learning

“In machine learning (ML), feature learning or representation learning is a set of techniques
that allow a system to automatically discover the representations needed for feature
detection or classification from raw data. This replaces manual feature engineering and
allows a machine to both learn the features and use them to perform a specific task.”
(wikipedia)

Task A Task B Task C

output

shared
subsets of
factors

a “good representation” that
can be used to perform many
tasks

input C )




Representation Learning

In trained artificial neural networks, the ‘representation’ usually just refers to the activity of
artificial neurons at a certain layer

Input Hidden Hidden Hidden Hidden Output
layer  layer 1 layer 2 layer3 layer4  layer




Can CNNs help us compare images?

— CAR
— TRUCK
— VAN

A nd M
4 58 .

’ <7 ] [] — eicycte
INPUT CONVOLUTION + RELU ~ POOLING  CONVOLUTION + RELU POOLING ratten FULLY  sortmax

CONNECTED
J N

ki i Y

FEATURE LEARNING CLASSIFICATION

Convolutional neural networks can learn to represent images in a way that
aligns more with both our perceptual experience and how images are used



Can CNNs help us compare images?

Pixel representation Layer 5 representation

10 3u

20

Dimensionality Reduction applied to :
different layers of a CNN trained on food
images:

-20

-30

-15 -40

A layer deep into the network better separates different kinds of food

mathworks



But a CNN trained to classify food won’t capture what we
care about for super-resolving climate models...

Paper is focused on downscaling atmospheric variables:

How similar are there two “vorticity How similar are there two “divergence

spatial fields” (spinning atmospheric spatial fields” (downward atmospheric
wind patterns)? wind patterns)?



Can we train a CNN that does help?

N
O
FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o pcrep SOFTMAX
b i e i
FEATURE LEARNING CLASSIFICATION

But what do we train this network to do? We don’t have labels.
How can we get this model to learn useful representations?



Self-supervised learning doesn’t require traditional labels

Many different ways to learn representations:

Other aspects of

All data points A few data points the dat 4 No data points
need separate are labeled € data are Useq are labeled
to create “labels
labels ¢ N
u %P o Semi-supervised Self-supervised o
° N\ %l learning learning .« 5 I % 0
®e_ow o0 Aon \ e®e!
OO 8 (o] \\ e} / OO \@ N
goooo © P |\°o$> /’
\ \\o/o/ o
Supervised lswrning Unsupervised learning




Contrastive learning: type of self-supervised learning

Repel

7T 27 Attract R

Augmentation

Kumar et al

Ting Chen et al
The model should learn to represent similar things similarly and different things differently. One possible

way to do this is add augmentations to an image and tell the network to label the different versions of the

original as the same, but versions of other images differently.



Generative models

* Discriminative Model * Generative Model
2 p(ylx) p(z.y)
£ H
g'/.- UTe g}?‘ --------- y=0

Google

information flow

Discriminative: model learns to map a high-dimensional input to a lower dimensional label

Generative: model learns to create a high-dimensional output that is a sample pulled from the
distribution learned from training data



Generative adversarial networks

Training data
m EW Classify fake images vs real images

Usually random X
values, but can
also include,
e.g., category

label 4
Latent vector z Generator s

Discriminator > real/fake?

-

aw® Backpropagation

PC R I (RS

Generate fake samples to fool the discriminator

One common architecture is a GAN: Generative Adversarial Network. By jointly training
the generator and discriminator (with different loss functions), the generator learns to
create convincing fake images



Generative adversarial networks (GANS)

Epoch 0

Here, the generator learned the statistics of hand-written digits.

https://sthalles.github.io/intro-to-gans/



thispersondoesnotexist.com

Images of faces created by a generative model trained on pictures of human faces



Generative models

Training data Sampling
(e.g. 64x64x3=12K dims)

Iherranz.org

The model learns what patterns of pixel values are statistically likely in face images. It
can then generate a new image that has a high probability of being a face.

Because of this, generative models can have many “right answers”



Generative models can be used to solve super resolution
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Generative models can be used to solve super resolution

But! We have extra information
here: we know what the original
high resolution image looks like
for each low resolution input.

We should use that info! Discriminator

network

Generator ' f
network TR (Real/Fake?>—

Adversarial loss



Generative models can be used to solve super resolution

The “content” loss term compares the
super-resolved image representation
produced by the generator to the original
high resolution image representation,
and uses this info to help the generator.

Content loss | Discriminator
network

Generator

network % 1 D : (Real/Fake?>—

Adversarial loss



Overview of the paper’s method:

e Train a self-supervised model on images of atmospheric data

e Use the representation from the self-supervised model as a measure of image
similarity

e Include this measure of image similarity in the loss function of a GAN, which
is trained to downscale atmospheric data images.

e Evaluate how well the GAN performs using other metrics relevant to
atmospheric data



