ML4CC: Lecture 4

Sit with your discussion groups (same as last time)!



Assignments reminder

Keep doing your weekly PMIRO+Q
Your first coding assignment was due at 8am.

Your second coding assignment will be posted after class and is due Feb 29
before the start of class.



Recap of previous paper

P: Need to be able to map building damage after a disaster

M: Train a convolutional neural network to classify building damage using an
existing dataset of satellite imagery

I: Vary the loss function and the type of inputs provided; also applied a “saliency”
method

R: Ordinal cross entropy loss with all three inputs (pre/post image with disaster
type) performs best

O: The dataset was filtered to not include small buildings and was subsampled to
be balanced across classes



Climate Change in the News

nature

Explore content v  About the journal v  Publish with us v Subscribe

nature » news > article

NEWS | 09 February 2024 | Clarification 12 February 2024

Climatologist Michael Mann wins
defamation case: what it means for
scientists

Jury awards Mann more than US$1 million — raising hopes for scientists who are attacked
politically because of their work.

By Jeff Tollefson

The case stems from a 2012 blog post published by the
Competitive Enterprise Institute (CEl), a libertarian
think-tank in Washington DC. In it, policy analyst Rand
Simberg compared Mann, then at Pennsylvania State
University in State College, to Jerry Sandusky, a former
football coach at the same university who was convicted of
sexually assaulting children, saying that “instead of
molesting children, he has molested and tortured data in
the service of politicized science that could have dire
economic consequences for the nation and planet”. Author
Mark Steyn subsequently reproduced Simberg’s
comparison as he accused Mann of fraud in a blog
published by the conservative magazine National Review.
In the same year, Mann sued both Simberg and Steyn,
as well as the CEI and the National Review, for libel,
without asking for damages.

As a public figure, Mann and his attorneys had to prove
not only that the defendants published false
statements, but also that they acted with malice. “It is
not easy to prove defamation against a public figure,” says
Lauren Kurtz, executive director of the Climate Science
Legal Defense Fund, an organization in New York City that
was formed in 2011 to advocate for Mann and other
scientists who were being targeted and harassed by
climate-change sceptics.



Paper 3 Discussion

Detailed Glacier Area Change Analysis in the
European Alps with Deep Learning

Codrut-Andrei Diaconu'? Jonathan L. Bamber??
codrut-andrei.diaconu@dlr.de j .bamber@tum.de
!German Aerospace Center (DLR) 2Technical University of Munich 3Uni\"Crsily of Bristol

Poster at NeurlPS - Tackling
Climate Change with Machine Absstvact
Learning workshop 2023

Glacier retreat is a key indicator of climate change and requires regular
updates of the glacier area. Recently, the release of a new inventory for the
European Alps showed that glaciers continued to retreat at about 1.3% a !
from 2003 to 2015. The outlines were produced by manually correcting the
results of a semi-automatic method applied to Sentinel-2 imagery. In this work
we develop a fully-automatic pipeline based on Deep Learning to investigate
the evolution of the glaciers in the Alps from 2015 to present (2023). After
outlier filtering, we provide individual estimates for around 1300 glaciers,
representing 87% of the glacierized area. Regionally we estimate an area loss
of -1.8% a ', with large variations between glaciers. Code and data are available
athttps://github.com/dcodrut/glacier_mapping_alps_tccml.



Attendance

Select one person from the group to go to this Google Doc and write down the

names of all people present in the group (remember to mark who took
attendance!)

https://docs.google.com/document/d/1PKhw9E2IJpAnFrEO88D0Oc2rscZFViclv47Q
NaSh1sGs/edit?usp=sharing (link is in Brightspace under Syllabus content)



https://docs.google.com/document/d/1PKhw9E2lJpAnFrFO88DOc2rscZFVlcIv47QNa5h1sGs/edit?usp=sharing
https://docs.google.com/document/d/1PKhw9E2lJpAnFrFO88DOc2rscZFVlcIv47QNa5h1sGs/edit?usp=sharing

Discussion Question 1

Explain what the authors say they are doing here, why they are doing it, and
whether or not you think it is a good idea.

Given that the resolution of Sentinel-2 data is 10m, we decided to use only the glaciers with an area

larger than 0.1 km?. Although this reduces the number of glaciers sampled (1646, i.e. about 37%), the
percentage of glacierized area covered 1s close to 95%. To facilitate further analyses, we additionally



Removing small glaciers

Getting rid of glaciers that are fewer than 10 pixels removes the majority of individual
glaciers.

But, because there are many large glaciers, it does not significantly impact the total
amount of glacier cover included in the data (~95%), which is arguably the more
important measure here.



Discussion Question 2

Explain what the authors say they are doing here, why they are doing it, and
whether or not you think it is a good idea.

A common criterion used to download optical data i1s by choosing the tile (i.e. 100km x 100km for
Sentinel-2) with the smallest percentage of cloud coverage for each region of interest. If we follow
this strategy and then compute the average cloud coverage per glacier (using the inventory outlines),
we obtain an average of 4%. However, if rather than restricting to one single tile we instead use the
least cloudy five tiles (centered on 01.09.2023 =+ 15 days) and then choose the best for each glacier
individually, we significantly reduce the cloud coverage to 0.1%. This is lower than the average in



Sentinel-2 Cloud Coverage
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Sentinel-2 satellite imagery
(top) comes with cloud
probability masks (bottom).

This lets you choose which
image date you want to use
based on which day has the
lowest cloud coverage



Sentinel-2 Cloud Coverage

(d) 2017 01 19

Kempineers and Soille

(e) 2017 08 07

It is possible (especially in
100km by 100km images) that
the least cloudy image overall
might not be the best for every
individual pixel.

Therefore they pick the best
image for each glacier
individually (out of the top 5
least cloudy)



Discussion Question 3

What loss function was used to train the model? Why is this appropriate for the
problem?



Loss function

Binary cross entropy loss

Binary segmentation (e.g. glacier vs not
glacier) can be understood as a binary
classification task for each pixel

TRUE CLASS
DISTIRBUTION

H(P*| P) = —Z:P_*I(L)' log‘P_(lﬂ'

PREDICTED CLASS
DISTIRBUTION

Chu et al




Discussion Question 4

What are the dimensions of the input to the model?
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performing in [8], with a relatively smaller model size compared to the other methods evaluated. We
extend the input from three to six channels, to accommodate the following inputs:

* five Sentinel-2 bands: blue (B2), green (B3), red (B4), NIR (B8) and SWIR (B12), which
we found the most informative;

* surface elevation, obtained from NASADEM]17] (30m resolution) and processed using
the Open Global Glacier Model[18]. The surface elevation should help for debris-cover on
glacie, Central Europe being one of the regions with the highest percentage of debris
cover[19].

Model training. We train the model to predict the probability that each pixel is glacier or not, using
patches of 256x256 pixels (i.e. 2.56x2.56 km). Given that we apply the model only on glacierized

Larger images are cut into smaller ones



Discussion Question 5

What was done to help balance the data? How does it help? Do you think it was a
good idea or not?



Centered images

patches of 256x256 pixels (i.e. 2.56x2.56 km). Given that we apply the model only on glacierized
regions, we sample patches only if the center is on the glacier, which also helps in balancing the two
classes. This implies that the model sees only the glaciers and a maximum buffer of 1.28km around,

T

Sampling mountain images at random may lead to a lot of “not glacier” pixels. Centering images around glaciers
ensures a similar mix of glacier and non-glacier.

Sometimes such centering would be “cheating” because at run time you may not know where the glaciers are. But the
goal here is to track the size of glaciers that were already inventoried, so it is acceptable to use that information.



Discussion Question 6
Why will the errors “cancel out” here?

Area (change) estimation. Given the significant volume loss observed over the 2000-2019 perlod[SU
with a mean elevation change of -1.02 £ 0.21 m a~!, we can assume that glaciers in this region do
not grow over the 2015-2023 period. This allows us to extract the changes in the areas by applying
the model for each glacier but only for the pixels within the inventory outlines, thus excluding the
predictions outside these. However, we do not use the areas from the inventory as the reference value
but the predicted ones such that, if the model makes systematic errors, they will cancel out, as in
the case illustrated in Figure|1| Therefore, for each glacier, we calculate the area change per year as



The model should underestimate in the same way across
time

__ outlineinventory || | 1km

2016 ’

prediction
2016

Here the model (red) underestimates
the size of the glacier compared to % )
how it was labeled in the dataset DA Ny
(green) in both 2016. Comparing the 2. ‘
model’s output in 2023 to the labeled
data from 2016 would overestimate
the amount of glacier melt. But using
the model’s estimates at both time
points does not.

A =3.65km? ||

p
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Discussion Question 7

Which does the model do better at: labeling glacier pixels as glaciers or not
labeling non-glacier pixels as glaciers?



Precision and Recall

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy 10U Precision Recall Fl1

r_l 1855 349 0.953 0.794 0.875 0.896 0.878
r2 1321 234 0.955 0.862 0.924 0.926 0.923
r3 1084 184 0.960 0.879 0.931 0.937 0.933
r_4 2146 406 0.964 0.836 0916 0.903 0.905
o} 2301 437 0.951 0.769 0.951 0.796 0.857

pEto: 096+0.01 083£0.05)092+0.03 0.89=+£0.06| 0.90=+0.03

Precision is slightly higher than recall, so
the model is a slightly better at not
labeling non-glaciers as glaciers (though
both numbers are high).

relevant elements

false negatives

retrieved elements

How many retrieved
items are relevant?

Precision = ———

true negatives

How many relevant
items are retrieved?

Recall = —



Precision and Recall

Follow-up Q: what are the rows in this table?

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy 10U Precision Recall Fl1

r_l 1855 349 0.953 0.794 0.875 0.896 0.878
r2 1321 234 0.955 0.862 0.924 0.926 0.923
r3 1084 184 0.960 0.879 0.931 0.937 0.933
r_4 2146 406 0.964 0.836 0916 0.903 0.905
o} 2301 437 0.951 0.769 0.951 0.796 0.857

pEto: 096+0.01 083£0.05)092+0.03 0.89=+£0.06| 0.90=+0.03

Precision is slightly higher than recall, so
the model is a slightly better at not
labeling non-glaciers as glaciers (though
both numbers are high).

relevant elements

false negatives true negatives

retrieved elements

How many retrieved How many relevant
items are relevant? items are retrieved?
Precision = ——— Recall = ——




Precision and Recall

Follow-up Q: what are the rows in this table?

Table 1: Performance metrics for each of the five testing CV folds.

subregion  #patches #glaciers Accuracy j(0]8) Precision Recall Fl1

r_1 1855 349 0.953 0.794 0.875 0.896 0.878

r2 1321 234 0.955 0.862 0.924 0.926 0.923

r3 1084 184 0.960 0.879 0.931 0.937 0.933

r 4 2146 406 0.964 0.836 0916 0.903 0.905

o} 2301 437 0.951 0.769 0.951 0.796 0.857
pEto: 096+0.01 0.83+0.05(092+0.03 0.89+0.06| 0.90=+0.03

longitude

\

percentage of total glacierized area

20% 20% 20% 20% 20%
fold 1 fold 2 fold 3 fold 4 fold 5

aggregated test predictions (n = 1633)

Figure Al: Cross-validation scheme with a geographic split



Discussion Question 8

Share what questions you wrote in your PMIRO+Q and decide as a group what
you'd like to ask.



Update your PMIRO+Q

Submit a second file to the Brightspace assignment (don’t overwrite the original):

It should:
Update your PMIRO as needed

Answer your own Q

You can be talking with your group during this!



15 min break



Lecture

Climate content: weather and climate simulation models

Machine learning content: generative models, evaluation metrics, self-supervised
learning



Shared Socio-Economic Pathways (SSPs)

5 narrative scenarios, representing
different approaches and resulting
challenges

SSPs include social, economic, and
governmental forces and challenges
Provide a framework for making
predictions of possible futures

Socio-economic
challenges for mitigation

4

X SSP 5: * SSP 3:
(Mit. Challenges Dominate) (High Challenges)
Fossil-fueled Regional Rivalry
Development A Rocky Road
Taking the Highwa!
SRETIMY Y ssp 2:
(Intermediate Challenges)
Middle of the Road
% SSP1: X SSP4:
(Low Challenges) (Adapt. Challenges Dominate)
Sustainability Inequality
Taking the Green Road ARoad Divided

Socio-economic challenges
for adaptation

v

Fig. 1 Overview of SSPs

Narratives in O’Neill et al., 2016, Glob Env Change, online first)
SSP1: low challenges for mitigation
(resource efficiency) and adaptation
(rapid development)

SSP3: high challenges for mitigation
(regionalized energy / land policies)
and adaptation (slow development)
SSP4: low challenges for mitigation
(global high tech economy), high for
adapt. (regional low tech economies)
SSP5: high challenges for mitigation
(resource / fossil fuel intensive) and
low for adapt. (rapid development)



SSPs as possible futures

Global population

Billion people

12

10

== SSP1
- SSP2

SSP3
== SSP4
== SSP5

2020

Global GDP

Trillion $USD (PPP)

1,000

800

600

400

200

2040

2060

2080 2100

P S

~ean

P

P S

Also labeled according to

amount of radiative forcing
(i.e. how much extra energy s

we are trapping due to

GHGs)

Effective Radiative Forcing (W/ m?)

SSP1-2.6

SSP1-1.9

0
1800 1900 2000 2100 2200 2300

SSP3-7.0
Other

Atmospheric CO, concentrations (p

SSP2-4.5

278
2100 2200 2300

2100 2200 2300

21002200 2300



Predicting temperature under different SSPs

GMST or GSAT warming relative to 1850-1900 (°C)

1995-2014
warming

GMST-|

GSAT
1850-1900

Historical global mean
surface temperatures

PAGES 2k reconstrugtion
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Consolidaed GMST (Chapter|2
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CO, emissions:

. <3 Peaking
Possible %  Halving
futures 0 Netzero
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Today
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Assessed Very high
GSAT range
(Chapter 4) SSP5-8.5

5%
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2050 2100



Predicting precipitation under different SSPs

Monthly precipitation

e ! Bl Historical
o B SSP126
. [ SSP245
6 - | l ¥ EEE SSP585
: b |H|
. i
47 STt LI l 1.
= RHERT I E
3 .” T
2 7 :%TT; I:%}i ; ilB'zr?
$TIT Lhcl T BHEREY
I . beis Ll
0 ssds idod dhet L gl

1 2 3 4 b 6 7 8 9 10 11 12



How do we make these predictions?

Climate simulation models!

A global climate model (GCM) is a complex mathematical
representation of the major climate components and their
interactions. The main climate system components treated in a
climate model are:

The atmospheric component, which simulates clouds
and aerosols, and plays a large role in transport of heat and
water around the globe.

The land surface component, which simulates surface
characteristics such as vegetation, snow cover, soil water,
rivers, and carbon storing.

The ocean component, which simulates current
movement and mixing, and biogeochemistry, since the ocean is
the dominant reservoir of heat and carbon in the climate
system.

The sea ice component, which modulates solar
radiation absorption and air-sea heat and water exchanges.

‘ ‘ includes the atmosphere,

incoming solar land, oceans, ice and biosphere
energy outgoing heat

transition from "¢"8Y
solid to vapour ¢
evaporative
and heat energy
exchanges cumulus
1 clouds

stratus clouds

cirrus clouds  atmospheric
GCl

precipitation amos J
b phere
evaporation (temperature, winds
and precipitation)
stratus clouds

evaporation

atmospheric model layers

Washington, et al., 2008

gfdl.noaa.gov



Climate models

Climate models divide the globe into a three-dimensional grid of cells representing specific geographic
locations and elevations. Each of the components (atmosphere, land surface, ocean, and sea ice) has
equations calculated on the global grid for a set of climate variables such as temperature.

The spatial resolution of the grid depends on the the amount of
computing power available.



Climate models

Observed
http//www.prismclimate.org

Current model resolution (200km) compared to
high-resolution models (50km and 25km) and observed data

Observed data provided by PRISM Climate Group, Oregon State University.

Better spatial resolution leads to more accurate models.



Climate models are compute intensive!

“A global climate model typically
contains enough computer code to fill
18,000 pages of printed text; it will have
taken hundreds of scientists many years
to build and improve; and it can require
a supercomputer the size of a tennis
court to run.”

e
=2 Met Office

2-3 years of simulation time can take 1 The Met Office Hadley Centre’s three new

Cray XC40 supercomputers, for example, are
day to run. together capable of 14,000 trillion

calculations a second. The timelapse video

below shows the third of these

supercomputers being installed in 2017.
https://www.carbonbrief.org/qa-how

-do-climate-models-work/



http://www.youtube.com/watch?v=q4uKS_wcfow
https://www.carbonbrief.org/qa-how-do-climate-models-work/
https://www.carbonbrief.org/qa-how-do-climate-models-work/

Physical simulations also power weather predictions

Weather forecast modeling

Timestep 5-10 minutes
Grid spacing 10-20 km

Variables at

the surface:
Temperature
Humidity
Pressure
Moisture fluxes
Heat fluxes
Radiation fluxes

K. Cantner, AGI

Also use a 3-D grid

veicaiexcnange - OMaller timestep: ~5 minutes for
between levels

weather, closer to 30 min to an hour for
climate.

Horizontal exchange
between columns

Much shorter forecasting window:

0 |

weeks instead of a century

Variables in the

atmospheric column:
Wind vectors
Humidity
Clouds
Temperature
Height
Precipitation
Aerosols



Climate and weather are different

Climate prediction can be
successful over long time
scales even as weather
prediction on short time
scales is difficult.

WEATHER CLIMATE

WHAT YOU GET

CONDITIONS OF THE
ATMOSPHERE OVER A SHORT
PERIOD OF TIME

This is because climate
variables are averages over
space and time.

CAN CHANGE WITHIN
MINUTES OR HOURS

Y, \4

< >

A A
‘\ N W

Soturday Sunday




Limits to climate prediction
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How TWO WEATHER PATTERNS DIVERGE. From nearly the same starting

point, Edward Lorenz saw his computer weather produce patterns that

grew farther and farther apart until all resemblance disappeared. (From
Lorenz's 1961 printouts.)

The climate system is a
“chaotic system” meaning that
small initial differences can
lead to large changes later.

Need to be able to run many
simulations with different
initial parameters to see the
distribution of possible
outcomes.



How can machine learning help?
Climate and Weather Model Emulators: Replace the physical simulation with a
learned machine learning model that is faster to run (your homework)

Hybrid Models: Help run higher resolution models by learning to upsample low
resolution values (the paper)



Weather model emulators are performing well as of late

a) Input weather state b) Predict the next state ¢) Roll out a forecast

GraphCast: Al model for faster and
more accurate global weather
forecasting

14 NOVEMBER 2023

Remi Lam on behalf of the GraphCast team r. The model then predicts the weather 6 hours in the future.

i forward in 6-hour increments to provide state-of-the-art

Our state-of-the-art model delivers 10-day weather predictions at

unprecedented accuracy in under one minute . .
3 | GraphCast is trained on decades of

historical weather data to learn a
model of the cause and effect
relationships that govern how
Earth’s weather evolves, from the
present into the future.



Hybrid climate models

Spatial resolution relevant for

GCM spatial resolution . : )
climate impact studies

34°8

= RN Downscale

36°

37°

5 7 9 1 13
Temperature (°C)

Statistical Downscaling: Learn a model that can project poor resolution information into a
higher resolution (“downscaling” = going to a lower spatial scale, “statistical” = learned
from data). Also known as “super-resolution”.

This is a “generative” modeling problem
NARCLIM



Generative models

* Discriminative Model

2 p(ylx)
g ' y+=0
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* Generative Model
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information flow

Discriminative: model learns to map a high-dimensional input to a lower dimensional label

Generative: model learns to create a high-dimensional output that is a sample pulled from the

distribution learned from training data



thispersondoesnotexist.com

Images of faces created by a generative model trained on pictures of human faces



Generative models

Training data Sampling
(e.g. 64x64x3=12K dims)

Iherranz.org

The model learns what patterns of pixel values are statistically likely in face images. It
can then generate a new image that has a high probability of being a face.



Generative adversarial networks

Training data
m EW Classify fake images vs real images

Usually random - . N
values, but can
also include,
e.g., category

label
Latent vector z Generator -, &

real/fake?

Discriminator

-

aw® Backpropagation

PC R I (RS

Generate fake samples to fool the discriminator

The specific model used is a GAN: Generative Adversarial Network. By jointly training the
generator and discriminator (with different loss functions), the generator learns to create
convincing fake images



Generative adversarial networks (GANS)

Epoch 0

Here, the generator learned the statistics of hand-written digits.

https://sthalles.github.io/intro-to-gans/



Generative models can be used to solve super resolution

But! We have extra information
here: we know what the original
high resolution image looks like
for each low resolution input.

We should use that info! Discriminator

network

Generator ' f
network TR (Real/Fake?>—

Adversarial loss



Generative models can be used to solve super resolution

The “content” loss term
compares the super-resolved
image produced by the
generator to the original high

resolution image, and uses this e
info to help the generator. ~_Content loss | Discriminator

network

Generator

network % 1 D : (Real/Fake?>—

Adversarial loss



Loss function for a super-resolution generator

B iKY+ 10788,
Sy’ — p—’
content loss  adversarial loss
/ \ Trick the
Want to: Recrfeg te .the true discriminator into
specific high

thinking this is a
real high
resolution image

resolution image
associated with
given low
resolution image



Loss function for a super-resolution generator

ISR — + 1073128,
N s
adversarial loss
\ Trick the
Want to: Recreate the true discriminator into
specific high

thinking this is a
real high
resolution image

resolution image
associated with
given low
resolution image

What mathematical
function should this be?



How do we compare two images?

: . 11 .
Pixelwise MSE = —— Z (Y (3,7) — Y (4,4))? where m,n are spatial
mean-squared error lle st s dimensions

MSE
doesn’t
necessarily
capture
what we
care about!

Original, MSE = 0; SSIM = 1 MSE = 144, SSIM = 0.988

cns.nyu.edu/~lcv/ssim/ MSE = 144, SSIM = 0.840 MSE = 144, SSIM = 0.694

MSE = 142, SSIM = 0.662



Can CNNs help us compare images?

— CAR
— TRUCK
— VAN
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INPUT CONVOLUTION + RELU ~ POOLING  CONVOLUTION + RELU POOLING ratten FULLY  sortmax

CONNECTED
J N

ki i Y

FEATURE LEARNING CLASSIFICATION

Convolutional neural networks can learn to represent images in a way
that aligns more with our perceptual experience



Can CNNs help us compare images?
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FEATURE LEARNING CLASSIFICATION

Representations = transformations of the original data. In ANNSs, the
activity of units at different layers in the network can be used as different
ways of representing the image.



Can CNNs help us compare images?

Pixel representation Layer 5 representation

10 3u

20

Dimensionality Reduction applied to different layers of a
CNN trained on food images:

-20

-30

-15 -40

Representations = transformations of the original data. In ANNSs, the
activity of units at different layers in the network can be used as different
ways of representing the image.
mathworks



But a CNN trained to classify food won’t capture what we
care about for super-resolving climate models...

Paper is focused on downscaling atmospheric variables:

How similar are there two “vorticity How similar are there two “divergence

spatial fields” (spinning atmospheric spatial fields” (downward atmospheric
wind patterns)? wind patterns)?



Need to train a CNN on atmospheric images

But what should the loss function be?

Label: ?7? ?7?



Self-supervised learning doesn’t require traditional labels

Many different ways to learn representations:

Other aspects of

All data points A few data points the dat 4 No data points
need separate are labeled € data are Useq are labeled
to create “labels
labels ¢ N
u %P o Semi-supervised Self-supervised o
° N\ %l learning learning .« 5 I % 0
®e_ow o0 Aon \ e®e!
OO 8 (o] \\ e} / OO \@ N
goooo © P |\°o$> /’
\ \\o/o/ o
Supervised lswrning Unsupervised learning




Contrastive learning: type of self-supervised learning

Repel

7T 27 Attract R

Augmentation

Kumar et al

Ting Chen et al
The model should learn to represent similar things similarly and different things differently. One possible

way to do this is add augmentations to an image and tell the network to label the different versions of the

original as the same, but versions of other images differently.



Overview of the paper’s method:

e Train a self-supervised model on images of atmospheric data

e Use the representation from the self-supervised model as a measure of image
similarity

e Include this measure of image similarity in the loss function of a GAN, which
is trained to downscale atmospheric data images.

e Evaluate how well the GAN performs using other metrics relevant to
atmospheric data



