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Outline for today

e Course Information
e Introductions and informal poll
e Lecture: Intro to Climate Science



Course Logistics

Full syllabus is on Brightspace

Time/Place:
11 AM to 12:15 PM on Tuesdays and Thursdays
Class Location: CDS, 60 5th Ave, Room 110
Lab: 11:15 AM -12:05 PM Fridays

Office hours
With Max: room 763 at CDS and on zoom, Wednesdays 10-11 AM
With Grace: 601 CDS or zoom, by appointment




Course Overview

This is an Advanced Topics course on applications of machine learning to help
mitigate and adapt to climate change.

You should walk away from this course with:

e A better understanding of the problem of climate change & potential solutions
e Knowledge of the many roles data science & machine learning can play here
e Confidence and skill to read academic ML papers and seek out new datasets



Evaluation

Weekly Brightspace discussion questions (10%)
Four programming assignments (40%)

In-class midterm (20%)

Final Project (30%)

Students will have 3 “grace days” they can use through the semester that will allow them to
turn in assignments late. They can be used all together (allowing a single assignment to be 3
days late) or separately. Once the grace days are used, late assignments will not be
accepted. Grace days cannot be used for the final project.



Course Schedule
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11.
12.
13.

14.

Overview of Course/Intro to Climate Science

Overview of the problem of Climate Change

First assignment given

Energy Efficiency - Optimal building design

Energy Efficiency - Managing power supply and demand
Monitoring GHGs - Methane detection

Monitoring GHGSs - Transportation

Second assignment given

Food Production - Sustainable farming

Food Production - Reducing food waste

Alternative Energy Sources - Designing better solar panels

. Alternative Energy Sources - Accelerating nuclear fission

Third assignment given

Carbon Dioxide Removal - Accelerating materials science
Carbon Dioxide Removal - Optimizing biology

Midterm Review/ Project Description

Project proposal assignment given

Midterm

SPRING BREAK

15.
16.
17.
18.
19.
20.

21,
22,
23.
24.
25.
26.
27.
28.

Catalyzing Change - Financing in a net-zero economy
Catalyzing Change - Influencing people/policy

Project Plan Presentations

Career Day

Better Predictions - Augmenting earth system models
Better Predictions - Predicting extreme weather events
Fourth assignment given

Disaster Response - Surveying wildfires

Disaster Response - Search and rescue with robots
Food Security - Predicting food shortages

Food Security - Automated Farming

Climate Migration - Tracking human movements
Project work day

Project Presentations

Project Presentations



Lecture Structure

Reminder of assignments/due dates

Climate Change in the news

Recap of previous lecture

Introduction to the day’s topic

Overview of how machine learning can be applied
Deep dive into a paper applying ML to the day’s topic
Summary



Informal poll

Are you comfortable with...
python

jupyter notebook

pandas

scikit-learn
matplotlib/seaborn

reading academic ML papers

climate change topics



Introductions



Alex Steffen, Climate Writer - The Snap Forward

“We don’t get to choose whether the
context of all our work is an
unprecedented, all-encompassing
planetary crisis. It simply is. There is
nowhere to stand outside of it. We
can pretend that’s not true — insist
that our lives or work or special
concerns will remain untouched by
ecological catastrophe and societal
upheaval — but in the long run,
we’re just fooling ourselves.”

“You’re not ready for what’s coming.
You're also not alone in your unreadiness.

| increasingly think none of us are ready.
We’re not ready for the depth of planetary
crisis we already find ourselves in, and
completely unprepared for what's on the
way.

Here’s the biggest way we’re not ready:
We’'re trying to understand an unprecedented
future with the worldviews of an older age,
formed on a different planet. We’re working
with slightly broken brains.”



Intro to Climate Science



Assignments

Brightspace discussion question:
“What year are you in and what do you want to do after graduation?”

Due Friday by 5pm.



Annual Average Temperature Rankings in 2022

Climate change in the news
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Intro to Climate Science outline

What is climate?
Atmosphere
Water

Carbon

Energy
Historical climate
Modern climate



What is climate?

The statistical description in terms of the mean and variability of relevant variables
such as temperature, precipitation, and wind over a period ranging from months to
thousands or millions of years. -ACS

These variables are the result of complex interactions between the atmosphere,

water, and land features.
- o W

» -

Credit: Adam Sébire / Climate Visuals



Atmosphere

Troposphere: Almost all clouds are in
the troposphere, and 99% of the water
that vaporizes from earth’s surface is
found here. Temperature and oxygen

levels decrease with increasing altitude.
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Atmosphere

Stratosphere: Contains ozone layer,

which converts ultraviolet light to heat.

This causes temperature to increase
with altitude within the stratosphere.
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Atmosphere

Mesosphere: coldest layer

Thermosphere: X-ray and UV radiation
causes the ionosphere and makes this
layer hot

Exosphere: Aimost not the atmosphere
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Atmospheric circulation

Surface winds caoused
by the Corlolis sffect
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http://www.youtube.com/watch?v=Ye45DGkqUkE

Water

Energy from the sun heats bodies
of water, causing evaporation
whereby water vapor enters the
atmosphere

Water can also enter the
atmosphere directly from snow and
ice and from plants

Colder temperatures in the upper
atmosphere cause condensation of
water vapor (clouds)
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Water
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Ocean currents

Currents arise from 3 main
forces:

1. Tides
2. Wind
3. Thermohaline effect

Do you see that? You've probably heard of this current.



http://www.youtube.com/watch?v=St7QRMJ7VfY

Carbon cycle

Carbon stores .
Carbon can be stored in the . Processes @
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Sediments and
sedimentary rock “ :
Rock formation Sinking sediment Deep ocean
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Earth’s energy “budget”

The earth receives energy from the
sun, but also radiates energy back
into space. The radiated energy is

of a longer wavelength.
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Earth’s energy “budget”

At different times, different locations
on earth receive different amounts

of solar input, leading to differences
in temperature, winds, currents, etc.
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Earth’s energy “budget”

Albedo controls how much of the
sun’s energy is directly reflected

back. Dark colors have low albedo.

Light colors can have high albedo;
for example, snow can reflect 90%
of the solar energy that reaches it
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Earth’s energy “budget”

The greenhouse effect refers to the
fact that heat emitted by the Earth’s
surfaces radiates back to the Earth.

The composition of the atmosphere
determines the amount of
back-radiation.

GREENHOUSE GASES |89l
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Earth’s energy “budget”

The greenhouse effect refers to the
fact that heat emitted by the Earth’s
surfaces radiates back to the Earth.

The imbalance between the amount
of energy that enters the earth’s msgbe
atmosphere and that which leaves -

is known as “radiative forcing”.

All values are fluxes in Wnr?
and are average values based on ten years of data

UCAR SciEd/NASA



Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Proxy methods include: rocks, sediments, boreholes, ice sheets, tree rings,
corals, shells, and microfossils




Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Temperatures have changed dramatically over time

Temperature of planet Earth
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Snowball Earth ~650mya

Temperature of planet Earth
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Warm and wet without distinct seasons
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°C vs 1960-1990 average
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

lce age
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Glaciers melt, sea levels rise, cold south pole and hot at the equator, greenhouse

effect / Temperature of planet Earth
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Swings between ice ages and ice melts, equator still tropical
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°C vs 1960-1990 average
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Pangea formation led to deserts. Huge warming led to extinction of 95% of

Specles \ Temperature of planet Earth
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to
understand how Earth systems work.

Repeated glacial cycles
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Historical Climate

Paleoclimatology uses a variety of techniques to reconstruct past climate trends to

understand how Earth systems work.

Holocene era aligns with
expansion of human civilization

GSF 2014
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Modern Climate

More recently (e.g. the past 200 years) humans have explicitly kept records of
climate variables like temperature, sea level, carbon dioxide levels, etc.

Formal, reliable records are considered to start around 1880.

Decadal Land-Surface Average Temperature

10-year moving average of surface temperature over land'
Gray band indicates 95% uncertainty interval
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Modern Climate Trends: Many heat records are being set

Global surface temperature records, 1850-2022
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Modern Climate Trends: Many heat records are being set

Effects of El Nino and La Nina on Global Temperatures

-@- Berkeley Earth -+ El Nino / La Nina removed

Degrees C warming from 1981-2010
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Modern Climate Trends: Many heat records are being set

Global ocean heat content, 1950-2022
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Modern Climate Trends: Many heat records are being set

Global glacier melt, 1950-2021
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Modern Climate Trends: Many heat records are being set

Arctic and Antarctic sea ice in 2022

[] Historical range == Arctic 2022 == Antarctic 2022 Record low




Modern Climate Trends: Many heat records are being set

Global mean sea level rise between 1880 and 2022
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Land and ocean temperature rise since the pre-industrial 1850-1900 period from Berkeley Earth. Figure produced by Dr Robert
Rohde.
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Global greenhouse gas concentrations
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