Food and Agriculture
Emissions

Problems and opportunities in agriculture



Assignments

Brightspace discussion question:

“Would you consider making changes to your diet based on its impact on climate?
Why or why not?”

Due this Friday by S5pm.

Second programming assignment on predicting building energy use

Due Friday the 17th by midnight.



Climate change in the news




Climate change in the news

Chick-fil-A is jumping on the plant-based bandwagon.

Chick-fil-A tests its first plant'haSEd sandwich The Atlanta chain said Thursday that it’s testing its first plant-based entrée __ a breaded
By DEE-ANN DURBIN  February 9, 2023 cauliflower sandwich __ at restaurants in Denver; Charleston, South Carolina; and the

Greensboro, North Carolina, area. The test begins Feb. 13.

Chick-fil-A said its culinary team spent four years developing the sandwich after guests told the
chain they wanted to add more vegetables to their diets. Chick-fil-A tested mushrooms, chickpeas
and chopped vegetables formed into patties but kept returning to cauliflower for its mild flavor.

Like Chick-fil-A’s signature chicken sandwich, the cauliflower steak is marinated, breaded,

pressure-cooked and then served on a bun with two pickle slices.

Chick-fil-A is a relative latecomer to the plant-based fast food scene. Burger King started selling
its Impossible Whopper __ featuring a plant-based burger made by Impossible Foods __ in 2019.
Starbucks launched an Impossible sausage sandwich in 2020. McDonald’s debuted its McPlant
burger __ developed with Beyond Meat __ in the United Kingdom in 2021. And KFC began selling
Beyond Meat nuggets last year.
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Where do transport emissions come from?
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Source: BloombergNEF. Note: ICE = internal combustion engine.

10  Zero-Emission Vehicles Factbook, November 2022
fre

Inputs

Imagery

End of Life
Recycling and
Disposal
o)’ WorldAutoSteel

Ground Truth

Channel Stack

Net
E - ton
Resstooe [T v samis [ ?
Ty | we N v Emissions Prediction



World Greenhouse Gas Emissions in 2016
Total: 49.4 GtCO_e

Sector End Use/Activity

Rail, air, ship
& pipeline

Buildings

Unallocated fuel
combustion 7.8%

Iron & steel 7.2%

Chemical &
petrochemical 5.8%

Other industry
(including the  12:3%
agriculture energy)

Fossil fuels 5.6%

Source: Greenhouse gas emissions on Climate Watch. Available ot: https./www.climatewatchdata.org



Understanding planet biomass
Biomass is measured in f'ifﬁ'f'emmh
terms of the amount of

carbon in a group of
living things.

Humans make up approximately 0.01% of all biomass on Earth. I
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Agriculture has a
large impact on
the planet

Greenhouse gas
emissions

Land use
2 Our World
Global land use for food production
Freshwater
Eanh’s surface_@ Withd rawals
Land surface 71% Habitable land N i
T 38% Forests | 1y;on Eutrophication
e
Agricultural land
------------ Mammal
biodiversity
oeet e, y_
Data source: UN Food and Agriculture ic licensed under CC BY by the authors Hannah Ritchie ar
‘OurWorldinData.org - Research and d: t rid's la t m Date published: -
Bird
biodiversity

Data sources: Poore & Nemecek (2018); UN FAO; UN AQUASTAT; Bar-On et al. (2018).
OurWorldinData.org - Research and data to make progress against the world's largest problems.

The environmental impacts of food and agriculture

26% of greenhouse gas emissions come from food
Food

Non-food

13.7 billion tonnes CO.eq 38.7 billion tonnes CO.eq

50% of the world’s habitable land is used for agriculture

Forests, shrub, urban area, freshwater
51 million km?

Agriculture
51 million km?

70% of global freshwater withdrawals are used for agriculture

Industry (19%)
Households (11%)

Agriculture

70% of freshwater withdrawals

78% of global ocean and freshwater pollution

Other sources
22%

Agriculture

78% of global eutrophication

Wild mammals (4%)

96% of global mammal biomass (excl. humans) is livestock

Livestock
96% of global mammal biomass (excluding humans)

71% of global bird biomass is poultry livestock

Wild birds
29% of bird biomass

Poultry livestock

71% of bird biomass

Licensed under CC-BY by the author Hannah Ritchie.
Date published: November 2022.



Ag riculture has a The environmental impacts of food and agriculture
Ia rg e i m paCt O n 26% of greenhouse gas emissions come from food

Greenhouse gas Food Non-food
th e p I a n et emissions 13.7 billion tonnes CO,eq 38.7 billion tonnes CO.eq

50% of the world’s habitable land is used for agriculture

. . . Land use Agriculture Forests, shrub, urban area, freshwater
Distribution of mammals on Earth  SIEEE llgled Aol

Mammal biomass is shown for the year 2015 /h or ”orﬂw = 1 million tonnes carbon (C)

Wild mammals Livestock & pets 70% of global freshwater withdrawals are used for agriculture
SRRSO i 62% global mammal biomass v:;ﬁil':“:\flg?; Agriculture Industry (19%)
o e e e e | . 70% of freshwater withdrawals Households (11%)
BRI = | R

YT
ﬂ\w“\ﬂ\ﬂ\wﬁwﬂ\w oo ool 78% of global ocean and freshwater pollution

e sssssCap—
oo oo
ﬂﬂ\ﬂ\ﬂvﬁﬂvﬁvﬂ\ﬂ\w afafatatatatat ot 96% of global mammal biomass (excl. humans) is livestock M idrammain)

UL E LR S st ettt il ng ol |

96% of global mammal biomass (excluding humans)
MAMAMAM e
‘ ‘ h h HShcep o o = . .
’“\ﬂ\ﬁ\ﬂ\ﬂ\ﬂ\’n\ﬂ\ﬂ\ﬁ LR L E 71% of global bird biomass is poultry livestock
; > ™ = a B Bird Poultry livestock Wild birds
Humans Pigs Camels Asses Pets' lodiversity 71% of bird biomass 29% of bird biomass
34% global mammal biomass 125 bl 2% <1%

tock only

4 average biomass. Data sources: Poore & Nemecek (2018); UN FAO; UN AQUASTAT; Bar-On et al. (2018). Licensed under CC-BY by the author Hannah Ritchie.
OurWorldinData.org - Research and data to make progress against the world's largest problems. Date published: November 2022.
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Agriculture accounted for 10% of the EU’s total greenhouse-gas emissions in 2012. A significant
decline in livestock numbers, more efficient application of fertilisers, and better manure
management reduced the EU’s emissions from agriculture by 24% between 1990 and 2012.

However, agriculture in the rest of the world is moving in the opposite direction. Between 2001
and 2011, global emissions from crop and livestock production grew by 14%. The increase
occurred mainly in developing countries, due to a rise in total agricultural output. This was driven
by increased global food demand and changes in food-consumption patterns due to rising
incomes in some developing countries. Emissions from enteric fermentation increased 11% in
this period and accounted for 39% of the sector's total greenhouse-gas outputs in 2011.



Agriculture: sources and sinks

e Farming of plants and animals can capture as well as release CO2.
e Farming requires land that may have been used for other purposes
e Modern farming practices lead to far more emissions than reductions in GHGs




Emissions (direct) from agriculture

Carbon dioxide makes up only a small

fraction of emissions from the
agriculture industry.

GWP of various

greenhouse gases
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GWP for CO: is 1, while CH.
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value of 0.82 in year 100
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Source: Timma, Dace & Knudsen, Energies, MDPI, 2020

Crop and Soil
Management

59%

———— Carbon
dioxide 1%

https://extension.missouri.edu/publications/g310



Crop and Soil Management

Soils store and release carbon through

&
. . . . Solar ef\e
interaction with plants, animals, and b /' Plants use CO, from
. ‘ \ the air and water from
microbes | " Plants the soil to build
absorb CO, carbohydrates

Soil organisms j Plants exude
release CO, ‘ N carbohydrates
through AAN through their
respiration / [\_ roots to feed
soil organisms

CO2 from the atmosphere enters the soil through .
decomposing plant matter, root exudates,
and the soil organisms that feed on them

How carbon cycles into and out of soil. Jocelyn Lavallee, CC BY-ND



Crop and Soil Management

Modern fertilizer production and use
causes a variety of emissions, as well
as other environmental problems.

The Triple Threat of Nitrogen Fertilizers

Synthetic nitrogen fertilizers, which are used heavily on corn, the country’s
most widely grown crop, contribute to climate change in three key ways.

B THREAT

Manufacturing nitrogen fertilizer is
energy-intensive. It uses natural gas or
other hydrocarbons and releases carbon
dioxide (CO32) and nitrous oxide (N20)
emissions in the process.

B THREAT
Microbes in the soil
convert nitrogen fertilizer
into nitrous oxide (N20),a
potent greenhouse gas
that also damages the

ozone layer.

Nitrates from nitrogen
fertilizer can also leach
through the soil and
contaminate
groundwater.

m THREAT
Rain and irrigation
runoff can wash nutrients
from fertilizer and livestock
manure into waterways, where
they feed algae blooms that
produce methane (CHg), another
greenhouse gas.

SOURCES: EPA; InsideClimate News research PAUL HORN / InsideClimate News

https://insideclimatenews.org/news/24102018/infographic-far
m-soil-carbon-cycle-climate-change-solution-agriculture/



Crop and Soil Management

Better agricultural practices
(sometimes called regenerative
farming) can help soil sequester more
carbon.

Because of the large amount of land
dedicated to farming, small changes
can have big impacts.

Soil’s Carbon Storage Capabilities Can Help Fight Climate Change - =

Clever soil management practices can help to offset excess carbon dioxide in the atmosphere.
\ L 3

A A\

Cover crops

Planting legumes or
grasses between rows
can help stop weeds
by keeping the land
covered and enriches
the soil.

Compost

Crop rotation
Rotating crops puts
nutrients depleted
by one crop back
into the soil by
planting another
the following year.

No-till farming

Not ploughing avoids
disturbing carbon in the
soil,and the ground
cover prevents weeds
and erosion. It also cuts
farmers’fuel use.

Agroforestry

Using manure and other
organic waste as compost
on fields avoids some
methane release, improves
water retention and
increases soil carbon.

Planting trees between
fields helps improve soil
organic carbon and
avoids erosion.

If the amount of
carbon in the top 12-
16 inches of soil was
increased by 0.4% per
year, it could counter

REGIONS WITH HIGHEST POTENTIAL TO STORE CARBON ON CROPLAND

Soil organic carbon after 20 years if sequestration is improved by 0.012 percent per year, in gigatons

the current annual
increase in COy,
according to the 4 per
315 1000 Initiative.

10.5 X 9.1

6.8
. . . . . North Ei Russi South East Asi South Asi; South E d
https://insideclimatenews.org/news/24102018/infographic-far s GRS S Aveia Y R coamem
m-soil-carbon-cycle-climate-change-solution-agriculture/ L

SOURCES: 4 per 1000 Initiative; Bar chart: Zomer et al., Scientific Reports, 2017 PAUL HORN / InsideClimate News




Crop and Soil Management

Rice paddies and their flooding is
responsible for 10% of global methane
release.

https://insideclimatenews.org/news/24102018/infographic-far
m-soil-carbon-cycle-climate-change-solution-agriculture/

Dry Rice Fields

Small amount of methane emissions

| Metha

Methane :

|| Flooded Rice Fields

Large amount of methane emissions

Methane

0 Low production

r
Oxidized State "
Methanogen

Sediment

‘ High production 0
®_o

@
Carbon dioxide ‘ Reduced State
Acetate etc, Methanogen

The oxidized soil suppresses the activities

of methanogens.

In anoxic environments, methanogens
actively form methane.




Enteric Fermentation and Manure

Digestive processes in
ruminant animals such as
cattle, sheep, goats, and
buffalo, cause methane
release.

Livestock-Based Methane Emissions

About a quarter of U.S. methane emissions come straight out of livestock,

most of it from belching.

Manure collection ponds

generate about a tenth of  \

all U.S. methane emissions.

SOURCES: EPA; FAO

METHANE EMISSIONS -

Microbes in the
cow’s stomachs
break down cattle
feed into useable
sources of energy
and protein and
produce methane.

METHANE EMISSIONS
PER GRAM OF PROTEIN
Global estimates in grams,
COy-equivalent

Buffalo

Beef

13

Milk from
cows

Pork

Chicken

PAUL HORN / InsideClimate News



Enteric Fermentation and Manure

Manure from large Livestock-Based Methane Emissions

About a quarter of U.S. methane emissions come straight out of livestock,

nu mberS Of anlma|S most of it from belching.

METHANE EMISSIONS -

stored in piles creates
anaerobic conditions and
the release of methane
and nitrous oxide. e or Y

all U.S. methane emissions. '\

Microbes in the
cow’s stomachs
break down cattle
feed into useable
sources of energy
and protein and
produce methane.

SOURCES: EPA; FAO

METHANE EMISSIONS
PER GRAM OF PROTEIN

Global estimates in grams,
COy-equivalent

Buffalo

Beef

13

Milk from
cows

Pork

Chicken

PAUL HORN / InsideClimate News



Indirect emissions from agriculture

Electricity
Burning of biomass

Land use changes

How Farms Contribute to Climate Change

Agriculture today is responsible for nearly a quarter of the world’s greenhouse gas emissions.
It’s also threatened by climate change and uniquely positioned to fight it.

AGRICULTURE SOURCES OF GREENHOUSE GAS EMISSIONS
United States, in kilotons of COz-equivalent, annual estimates for 2016 i

4 Nitrous oxide (N20) Soil management
4 Carbon dioxide (CO5) (primarily fertilizers and Burning of
1" Methane (CHg) decomposition of organic crop residues

matter)
292,600kt 370'“

f Land converted t

to cropland

4 \

'3

livestock
170,100kt

@’3“5 ,:f‘

Manure
management

Land Use Sink:
Soil carbon storage

~10,000kt
[

Soils store carbon
produced by plants
and animals, keeping
it out of the
atmosphere

*Energy emissions are a 2012 estimate from
the UN Food and Agriculture Organization. All
other data were reported by the U.S. EPA.

SOURCES: EPA; FAO PAUL HORN / InsideClimate News



Indirect emissions from agriculture

AGRICULTURE IS RESPONSIBLE FOR

Electricity @7 % OF GLOBAL DEFORESTATION I

Burning of biomass

Land use changes

IF TRENDS CONTINUE, ABOUT 10 ALTERNATIVE PATHWAYS WOULD ONLY
MILLION KM2 OF LAND WILL BE CLEARED  REQUIRE ABOUT 2 MILLION KM2 OF LAND
BY 2050 TO MEET FOOD DEMAND WILL BE CLEARED
3.,00C 15000
- ' -t/
—) J ‘J \) : MtCO2e/year
MtCO2e/year H
- ‘ - _ R
- :
m - m
m = H
A :

downtoearth.org



Emissions from specific foods

Greenhouse gas emissions per kilogram of food product
Emissions are measured in carbon dioxide equivalents (CO2eq). This means non-CO2 gases are weighted by the amount of warming they cause over a
100-year timescale.

Beef (beef herd) 99.48 kg

Lamb & Mutton 39.72kg

Beef (dairy herd)

Coffee 28.53 kg

Prawns (farmed) 26.87 kg

Cheese 23.88kg

Pig Meat 12.31kg
Poultry Meat 9.87 kg

Eggs

Rice

Tofu

Milk

Oatmeal

Tomatoes

Wheat & Rye

Berries & Grapes

Peas

Bananas

Potatoes

Nuts
Okg 20kg 40kg 60kg 80kg

Source: Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. OurWorldinData.org/environmental-impacts-of-food ® CC BY
Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon
dioxide, over 100 years.



Emissions per 100g of protein

GHG emissions intensity (kgCO,-eq per 100g of protein) CH, Share (%)
-5 0 5 10 15 20 25 30 35 40 45 5 0 50 100
Emissions estimates have wide Boof (e cate) E————— A
il . Lamb & Mutton === | Beaicon
variability due to different Crustaceans (famed) e =15
. . Beef (dairy cattle) | m— o | 38
farming practices. e N v =
Crustaceans (capture) | ] [ i
Milk (] | 28
Pig Meat ] ]
Poultry Meat ===
Fish (famed) o —— |5
H e / ; Eoos o
g 200 :aﬁfgﬁgompastursexpansion 2 100 § .
g 2 1 Bovine meat production (megatons / year) 2 é Sole'k - i
% 150 2 2 75 ;g Grains. - i 27
§ 100 2 é % Fish (capture) -
% / 2 g Tofu i ]
g i |I|||||I ’ i Groundnuts m
° 0 eesgcarisan i Pulses excl. peas i
goggzss 238l 1 10th percentile  Mean  90th percentile
LR Peas ] | | |
. $$ + [ —
Nuts

Fig. 3. Per-kilogram GHG footprints of bovine meat, by producing country, shown for countries that produced over 100 000 metric tons in 2011-2013.




Significant changes to agriculture are necessary to avoid unsustainable warming

Food emissions could consume most of our 1.5°C or 2°C carbon budget SHNEE

Shown are estimates of cumulative greenhouse gas emissions from food production from 2020 to 2100 based on population, dietary in Data

and agricultural trends in a business-as-usual scenario. This is shown relative to total cumulative emissions to keep global average
temperature rise below 1.5°C or 2°C by 2100.

Food emissions 1356 billion tonnes (Gt)

(business-as-usual) (between 2020 and 2100)

To have a 67% chance of staying below 2°C
we could emit only 49 billion tonnes of CO,
™ from all non-food sectors.

1.5°C budget 500 Gt

( ) fi 2020 d This is equal to just over one year of current
67% chance rom onwards

fossil fuel emissions (36 billion tonnes).
Even if we stop all emissions from non-food
sectors (energy and industry) today,

food emissions alone would take us well
beyond 1.5°C by 2100.

We can only emit another 500 billion tonnes of CO e to
have a 67% chance of staying below 1.5°C of warming.

1.5°C budget 705 Gt

(50% chance) from 2020 onwards

2°C budget 1405 Gt

(67% chance) from 2020 onwards

2°C budget 1816 Gt

(50% cha nce) from 2020 onwards

\ |
1.5°C limit 1.5°C limit 2°C limit
(67% chance)  (50% chance) (67% chance) (50% chance)

2°C limit

Note: This is measured in global warming potential (GWP*) CO, warming-equivalents (CO -we).
Source: Michael Clark et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science.
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.



What needs to be done, according to the IPCC

A change in diets (and culture)

Shifting consumption towards plant-based diets has “high mitigation potential”, says the report. There is robust evidence that “diets high
in plant protein and low in meat and dairy” make for lower GHG emissions.

IPCC estimates with high confidence that shifts to sustainable healthy diets have a “technical potential” to reduce emissions by
3.6GtCO2e, with a range of 0.5 to 8GtCO2e.

Key enablers for these shifts could include creating “novel narratives” in the media and entertainment industry to “help to break away
from the established values, discourses and the status quo”. These might portray plant-based diets as healthy and natural, for
example.

The IPCC report explores other measures that could be used to influence choices in the food sector, including taxes or carbon pricing
on food, both of which it says would be “regressive”, meaning they disproportionately burden poorer members of society. Instead, it
points to options including marketing regulations, procurement policies, dietary guidelines, labelling and “nudges”.

https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/



What needs to be done, according to the IPCC

New technologies

Beyond dietary changes, the report says there is limited evidence — but high agreement — that a suite of “emerging technologies” could
bring “substantial reduction in direct GHG emissions from food production”. These include plant-based alternatives to animal products,
cultured meat, and “controlled environment agriculture”, which it describes as "hydroponic or aquaponic cultivation systems that do not
require soil”.

These technologies typically have lower water, land and nutrient footprints, but as some of them are energy-intensive, they need to
have access to low-carbon energy.

https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/



What needs to be done, according to the IPCC

Focus on highest emitters globally

Global food supply chains have a strong influence on per-capita food consumption emissions, particularly for red meat and dairy, the
report notes, such that the highest per-capita food-related emissions “do not correlate perfectly with the income status of countries”. In
other words, even relatively poorer countries may have a high per-capita food footprint.

As a result, the report says “it is crucial to focus on high-emitting individuals and groups within countries, rather than only those who
live in high-emitting countries, since the top 10% of emitters live on all continents and one third of them are from the developing world”.

https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/



How can we reduce global greenhouse gas emissions from food? Our World

Shown are estimates of cumulative greenhouse gas emissions from food production from 2020 to 2100 under a business-as-usual

scenario, and five interventions to reduce emissions.
This is measured in global warming potential (GWP*) CO, warming-equivalents (CO,-we).

1356 billion tonnes (Gt)

Business-As-Usual
(between 2020 and 2100)

in Data

Under a business-as-usual scenario, food production will emit 1356 billion tonnes.

Food emissions from 2020 to 2100 if we achieve one of the following...

1162 Gt
(from 2020 to 2100)

High Yields

27% reduction

14% reduction

Emissions from food alone will exceed our 1.5°C budget and most of our 2°C budget.

Half Food Waste 992 Gt 24

30% reduction

Healthy Calories

40% reduction

Best farm practices
(lower emissions intensity)

48% reduction

Plant-Rich Diet*

(reduced meat, not vegan)

Food emissions from 2020 to 2100 if we achieve all of the above, partially (50%) or fully (100%)...

. 63% reduction
Partial (50%) <
Fully (100%) ;7 Gt 101% reduction
"
1.5°C limit 1.5°C limit
If we adopted all five interventions we would (67% chance) (50% chance)

reduce emissions but also sequester carbon by
growing forests and grasslands on current farmland.

_ We can only emit 500 Gt from all sources (food and non food)
This would result in net negative emissions. 210

to have a 67% chance of keeping below 1.5°C by

*Based on the EAT-Lancet Planetary Health diet which reduces but does not eliminate meat or dairy consumption.
Source: Michael Clark et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science.

BAU 2°C limit
(67% chance)

OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.



Opportunities for ML in sustainable agriculture



Opportunities for ML in sustainable agriculture

Monitoring land change to
estimate emissions

Research article

Integrating remote sensing and machine
learning into environmental monitoring and
assessment of land use change

Hong Anh Thi Nguyen ? b = , Tip Sophea © de & , Shabbir H. Gheewala ? b =,
=

Rawee Rattanakom ¢ =, Thanita Areerob ¢ 5, Kritana Prueksakorn

cdf o
~

.

I Sentinel-2 (Satellite data)

‘ Image classification

Official land use data
set (current year: for
verification)

I Atmospheric correction

Map creation — I

_ Randomforest | |

GIS

10- fold cross validation

Environmental
protection map

3
Land use/ land cover
classification

.

1r

Map of constructions in the
environmental protection area.

Land use analysis

Applications _|

IPCC guideline 2016

LIME 2
'

Environmental degradation
cost estimation

Available data Methods E Results Altemative applications

Carbon stock estimation

Official land use data
set (Previous years:
for analysis of land-

use change)

GIS

:

Land use/ land cover
classification

United Nations guideline ‘

Indicators of Sustainable
Development- land

Greenhouse gas ecological footprint
Greenhouse gas bio-capacity




Opportunities for ML in sustainable agriculture

PAPER * OPEN ACCESS

Tracking and predicting A machine learning based modelling framework to predict
different tvpes of emissions nitrate leaching from agricultural soils across the

yp Netherlands
from SO||S Job Spijker! (&), Dico Fraters' {2 and Astrid Vrijhoef!

Published 14 April 2021 « © 2021 The Author(s). Published by IOP Publishing Ltd
Environmental Research Communications, Volume 3, Number 4

Focus on Reactive Nitrogen and the UN Sustainable Development Goals
Citation Job Spijker et al 2021 Environ. Res. Commun. 3 045002
DOI 10.1088/2515-7620/abf15F

Conclusions

S5y erediion oS gl Using our RF predictive modeling framework, we created a map of nitrate concentrations leached

mo from the root zone of agricultural soils across the Netherlands for the year 2017.With our model, we
— 4 interpolate the nitrate concentrations measured at the farm level on a national scale. In our model,
DE‘E the most important variables for the prediction are variables related to the present of grasslands
— (land use, crops), and variables related to altitude, soil (soil type, clay and organic matter content),

groundwater level and N and P emissions to surface water. The explained variance and statistical

@ ZoomIn & Zoom Out > Resetimage size

Figure 7. Map of nitrate concentrations in the root zone leachate for the year 2017. Areas A,

B, and C are areas with high predicted concentrations, marked for discussion.



Opportunities for ML in sustainable agriculture

Tracking and predicting
emissions from animals
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Modelling methane emissions from pig manure using
statistical and machine learning methods
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Conclusion

Measurements were carried out in three experimental pig’s barns with three different types of
concentrated diets to characterize manure production. The quantity of manure produced per
pig, moisture content, DM, ash, and VS contents increased with the mass and feed intake of
pigs. Body mass ranged from 60 to 90 kg a pig produced around 3.35 kg of manure per day
consisting of 66% moisture content and 34% DM. The manure’s ash content was 28% DM

(0.47 kg pig™! day™), while the VS was 72% DM (1.15 kg pig~! day™). In the present study, the
pigs’ mass and the quantity of feed intake were used as explanatory variables to model the
CHj production rate. Five statistical and ML algorithms were evaluated based on three
statistical qualitative parameters for CH4 emission modelling. The results showed that the
regression-based models performed better than the ANN model. Moreover, the RR model was

selected as the best model among those models in predicting CHy production. This priority for
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Opportunities for ML in sustainable agriculture

Precision agriculture

“We propose a path towards more sustainable
agriculture, considering plant development an
optimization problem with respect to certain
parameters, such as yield and environmental impact,
which can be optimized in an automated way.
Specifically, we propose to use reinforcement learning
to autonomously explore and learn ways of influencing
the development of certain types of plants, controlling
environmental parameters, such as irrigation or
nutrient supply, and receiving sensory feedback, such
as camera images, humidity, and moisture
measurements. The trained system will thus be able to
provide instructions for optimal treatment of a local
population of plants, based on non-invasive
measurements, such as imaging”

Reinforcement Learning for Sustainable Agriculture

Jonathan Binas' Leonie Luginbuehl’ Yoshua Bengio '

,“:\\\ Climate control
( : \ L H

WU
C\
>

Non-invasive sensing

—)

S
A/@\U

= Optimal controller based
;/ on learned model

Nutrient control

Figure 1. INustration of the approach. After training in a controlled
environment, the learned model can be used to provide optimal
treatment recommendations in the field.



Opportunities for ML in sustainable agriculture

In general, approaches that
increase efficiency on farms
may help reduce emissions

(but may not!)

Machine Learning in Agriculture: A Review
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Abstract

Machine learning has emerged with big data technologies and high-performance computing to create new
opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a
comprehensive review of research dedicated to applications of machine learning in agricultural production systems.
The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease
detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on
animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and
classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies.
By applying machine leamning to sensor data, farm management systems are evolving into real time artificial
intelligence enabled programs that provide rich recommendations and insights for farmer decision support and
action.

Keywords: crop management; water management; soil management; livestock management; artificial
intelligence; planning; precision agriculture
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= Soil management
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Predicting and Mapping of Soil Organic Carbon Using Machine Learning
Algorithms in Northern Iran
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Goal: Predict the amount
carbon stored in soil based
on other factors of the land
that normally correlate with it.


https://www.mdpi.com/2072-4292/12/14/2234

Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

If successful, how could this system be useful?



Data: Target variable

Northern region of Iran where some
on-the-ground tests of soil carbon
have been made

Dataset contains 1879 composite surface soil samples from
two main sources (Figure 1). More than half of the data
(1055 samples) were derived from five Master of Science
(M.Sc.) research projects in the soil science department at
Sari Agricultural Sciences and Natural Resources University
(SANRU) [60,61,62,63,64]. These samples were collected
using a simple random sampling scheme mostly in
uncultivated areas. The rest of the dataset comes from soll
surveys performed by the Agricultural Research Education
and Extension Organization (AREEQ) and the Ministry of
Jahad-e-Keshvarzi in Sari, Northern Iran. These samples
were mostly collected in cultivated areas spread across the
province using a grid sampling scheme with a 2000 m grid
interval.
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Data: Predictors

The authors collected a wide range of
data that could be predictive of soall
carbon.

Regressors included variables derived from remotely sensed
imagery (60 variables from Landsat 8 and
MODerate-resolution Imaging Spectroradiometer, MODIS),
terrain attributes (30 variables), climatic data (10 variables),
and five categorical data (e.g., soil map and land use map).
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Methods: Feature selection

Selection Crossover

Genetic algorithm is used to pare down the list of EEEEE EENEN | EEEESCOOCD
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2.4. Selection of Auxiliary Variables Using Genetic Algorithms (GA) e Two item sets are randomly subsetted and recombined.

Instead of taking all 105 environmental auxiliary variables into consideration for a predictive ML algorithm, the
feature selection method reduces the number and collinearity of the auxiliary variables. The most informative
auxiliary variables should be inserted into the algorithms with the aim of high accuracy of the ML algorithms for SOC
prediction [9,16,25]. The selection of the significant environment auxiliary variables is a preprocessing step for ML

algorithms to remove redundant and irrelevant variables. For this study, one of the most advanced algorithms for Fitness evaluation Mutation

feature selection, namely the genetic algorithm (GA), was used to select the most appropriate auxiliary data to be fed

as inputs to the ML algorithms [16]. GA is able to select those auxiliary data that are not only essential but improve EEEEEOw0 1 — EEEEECCECD

performance as well. Moreover, GA can manage the nonlinear relationships between SOC and auxiliary data [70]. o o / — L EEEEE
By mimicking natural biological evolution, the GA which is a heuristic search algorithm provides the best value OOROooooOo f x) = EEERCCCEEE

for a function [51]. A GA feature selection process starts with an initial random population consisting of individuals. OO EEEEE B8 aaEaEEE

The individuals, representing subsets of auxiliary data, are encoded as binary in which 1 represents if the feature is
selected and 0 otherwise [71]. Then three primary operations including selection, crossover, mutation repeat until a
stopping criterion is reached. The selection operations were for selecting the two fittest individuals for reproduction
(i.e., the solutions providing the lowest root mean squared error, RMSE). The crossover recombines two individuals
to create new ones which may be better. The mutation operator introduces alteration in a small number of
individuals. The process of selection, crossover, and mutation continues until a termination condition is satisfied
[48,52]. Importantly, for each generation, it is necessary to assign a fitness value to each individual in the population
so that the RMSE values are calculated by fitting the random forest model [46,48,52].

Item sets are evaluated according to a fitness function;
results in turn influence selection probability in the next
iteration.

Schroeders et al, 2016

Some items are replaced
with items from the initial
item pool.



Methods: Feature selection

GA selected 35 predictors out of 105 environmental
variables.

2.4. Selection of Auxiliary Variables Using Genetic Algorithms (GA)

Instead of taking all 105 environmental auxiliary variables into consideration for a predictive ML algorithm, the
feature selection method reduces the number and collinearity of the auxiliary variables. The most informative
auxiliary variables should be inserted into the algorithms with the aim of high accuracy of the ML algorithms for SOC
prediction [9,16,25]. The selection of the significant environment auxiliary variables is a preprocessing step for ML
algorithms to remove redundant and irrelevant variables. For this study, one of the most advanced algorithms for
feature selection, namely the genetic algorithm (GA), was used to select the most appropriate auxiliary data to be fed
as inputs to the ML algorithms [16]. GA is able to select those auxiliary data that are not only essential but improve
performance as well. Moreover, GA can manage the nonlinear relationships between SOC and auxiliary data [70].

By mimicking natural biological evolution, the GA which is a heuristic search algorithm provides the best value
for a function [51]. A GA feature selection process starts with an initial random population consisting of individuals.
The individuals, representing subsets of auxiliary data, are encoded as binary in which 1 represents if the feature is
selected and 0 otherwise [71]. Then three primary operations including selection, crossover, mutation repeat until a
stopping criterion is reached. The selection operations were for selecting the two fittest individuals for reproduction
(i.e., the solutions providing the lowest root mean squared error, RMSE). The crossover recombines two individuals
to create new ones which may be better. The mutation operator introduces alteration in a small number of
individuals. The process of selection, crossover, and mutation continues until a termination condition is satisfied
[48,52]. Importantly, for each generation, it is necessary to assign a fitness value to each individual in the population
so that the RMSE values are calculated by fitting the random forest model [46.48,52].
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Methods: Models

The study compares a variety of regression techniques:

support vector machines (SVM), artificial neural networks (ANN), regression
tree, random forest (RF), extreme gradient boosting (XGBoost), and
conventional deep neural network (DNN)
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Results



Results

Table 4. Comparisons of the accuracy of six machine leaming models for validation dataset by 10-fold cross-validation (means + standard deviation).

ML Algorithms MAE RMSE R2 ccc
SVM 0.69 £0.07 0.87 £0.05 0.53+0.05 0.76 £ 0.05
ANN 0.67£0.08 0.85+0.07 0.550.05 0.77 £ 0.06

Cubist 0.66 +0.06 0.83+0.04 0.57+0.04 0.78 £0.04

RF 0.65+0.03 0.82+0.03 0.58 £ 0.05 0.78 £0.03
XGB 0.66 £0.04 0.83+0.04 0.57+0.03 0.78 +0.04
DNN 0.59 £ 0.06 0.75+0.06 0.65 + 0.05 0.83+0.06

ML: machine learning; SVM: support vector machine; Cubist: regression tree; XGBoost: an extreme gradient boosting; RF: random forest; ANN: artificial neural networks; DNN:

deep neural networks; MAE: mean absolute error; RMSE: root mean square error; RZ: the coefficient of determination; CCC: Lin's concordance correlation coefficient.

The DNN model outperforms other models by delivering
65% of the SOC variability. The DNN algorithm showed
the lowest mean MAE value (0.59) of the six studied ML
algorithms. The DNN outperformed with the lowest mean
RMSE value (0.75).
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Application of the model

“The predicted SOC map could be
used as a base-line for further
studies and projects related to the
C sequestration development both
locally in soils of the Mazandaran
province and globally at the
worldwide scale.”
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Further Resources

Overviews of emissions from agriculture:

https://www.wri.org/insights/everything-you-need-know-about-agricultural-emissions

https://ourworldindata.org/environmental-impacts-of-food

IPCC recommendations for the food system:
https://www.carbonbrief.org/in-depth-ga-the-ipccs-sixth-assessment-on-how-to-tackle-cli
mate-change/ (item 6)

Scientific review of GHG sources and opportunities for change in food production and
consumption https://www.science.org/doi/full/10.1126/science.aaq0216

“Future cookbook” article:
https://qgrist.orq/fix/food-farming/climate-cookbook-sustainable-recipes/



https://www.wri.org/insights/everything-you-need-know-about-agricultural-emissions
https://ourworldindata.org/environmental-impacts-of-food
https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/
https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/
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https://grist.org/fix/food-farming/climate-cookbook-sustainable-recipes/

Distribution of mammals on Earth
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How Farms Contribute to Climate Change
Agriculture today is responsible for nearly a quarter of the world’s greenhouse gas emissions.
It’s also threatened by climate change and uniquely positioned to fight it.

AGRICULTURE SOURCES OF GREENHOUSE GAS EMISSIONS )
United States, in kilot annual estil /
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