Food and Agriculture Emissions

Problems and opportunities in agriculture

Assignments

Brightspace discussion question:

"Would you consider making changes to your diet based on its impact on climate? Why or why not?"

Due this Friday by 5pm.

Second programming assignment on predicting building energy use

Due Friday the 17th by midnight.

Climate change in the news

Climate change in the news

Chick-fil-A tests its first plant-based sandwich

By DEE-ANN DURBIN February 9, 2023

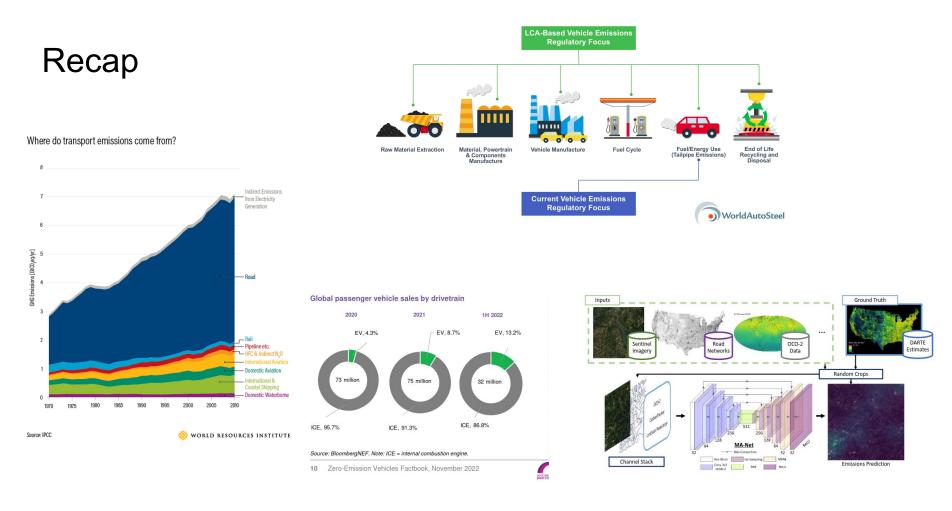
Chick-fil-A is jumping on the plant-based bandwagon.

The Atlanta chain said Thursday that it's testing its first plant-based entrée ___ a breaded cauliflower sandwich ___ at restaurants in Denver; Charleston, South Carolina; and the Greensboro, North Carolina, area. The test begins Feb. 13.

Chick-fil-A said its culinary team spent four years developing the sandwich after guests told the chain they wanted to add more vegetables to their diets. Chick-fil-A tested mushrooms, chickpeas and chopped vegetables formed into patties but kept returning to cauliflower for its mild flavor.

Like Chick-fil-A's signature chicken sandwich, the cauliflower steak is marinated, breaded, pressure-cooked and then served on a bun with two pickle slices.

Chick-fil-A is a relative latecomer to the plant-based fast food scene. Burger King started selling its Impossible Whopper _____ featuring a plant-based burger made by Impossible Foods ______ in 2019. Starbucks launched an Impossible sausage sandwich in 2020. McDonald's debuted its McPlant burger _____ developed with Beyond Meat ______ in the United Kingdom in 2021. And KFC began selling Beyond Meat nuggets last year.



World Greenhouse Gas Emissions in 2016 Total: 49.4 GtCO₂e

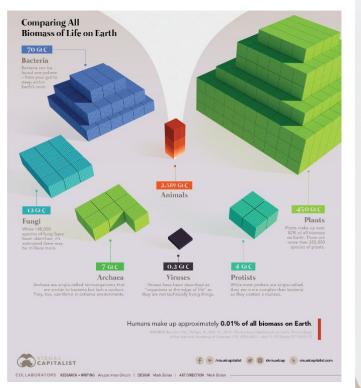
Sector			End Use/Acti	End Use/Activity		
ENERGY	Transpor- tation	15.9%	Road	11.9%		
			Rail, air, ship & pipeline	4.3%		
	Electricity & heat	30.4%	Buildings	17.5%		
			Unallocated fuel combustion	7.8%		
			Iron & steel	7.2%		
	Other	26.7%	Chemical & petrochemical	5.8%		
			Other industry (including the agriculture energy	12.3%)		
i	Industrial	5.004	Fossil fuels	5.6%		
	process	5.6%	Cement	3%		
	Agriculture & land use change	18.3%	Livestock & manure	5.8%		
			Agricultural soils	5.4%		
			Burning	3.5%		
	Waste	3.2%	Other Waste	3.6%		
	waste	3.270	Waste	3.2%		

Source: Greenhouse gas emissions on Climate Watch. Available at: https://www.climatewatchdata.org

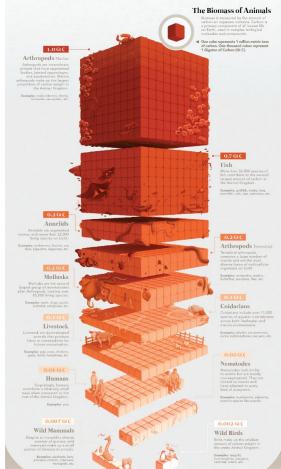
Visualizing the Biomass of Life Vor plant supports over 8.2 million spreies, but it can be difficult to they approach the scale of the incerdible dwardy. We break down the scale composition of the lower with the break of the incerdible dwardy. We break down the scale composition of the lower with the break of the br

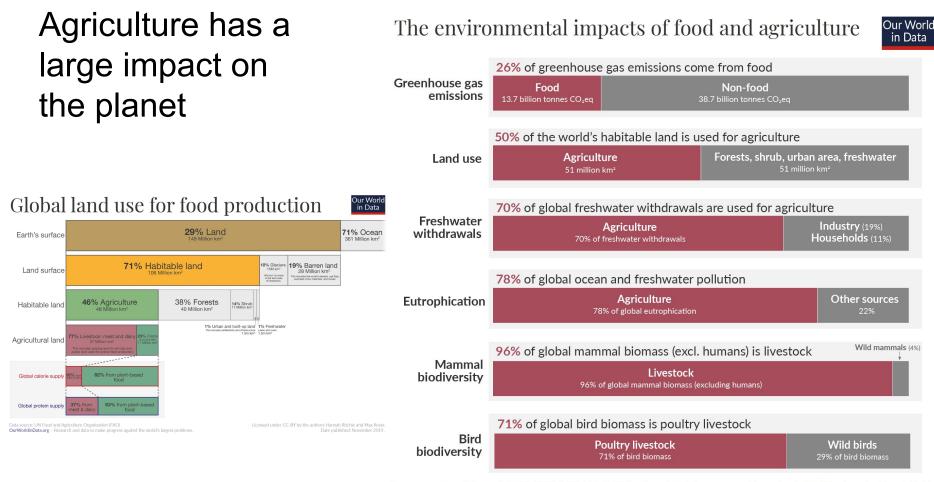
Understanding planet biomass

Biomass is measured in terms of the amount of carbon in a group of living things.



https://www.visualcapitalist.com/all-the-biomass-of-earth-in-one-graphic/





Data sources: Poore & Nemecek (2018); UN FAO; UN AQUASTAT; Bar-On et al. (2018). OurWorldinData.org – Research and data to make progress against the world's largest problems. Licensed under CC-BY by the author Hannah Ritchie. Date published: November 2022.

Agriculture has a large impact on the planet

Distribution of mammals on Earth

Cattle

Wild mammals

4% global mammal biomass

Humans

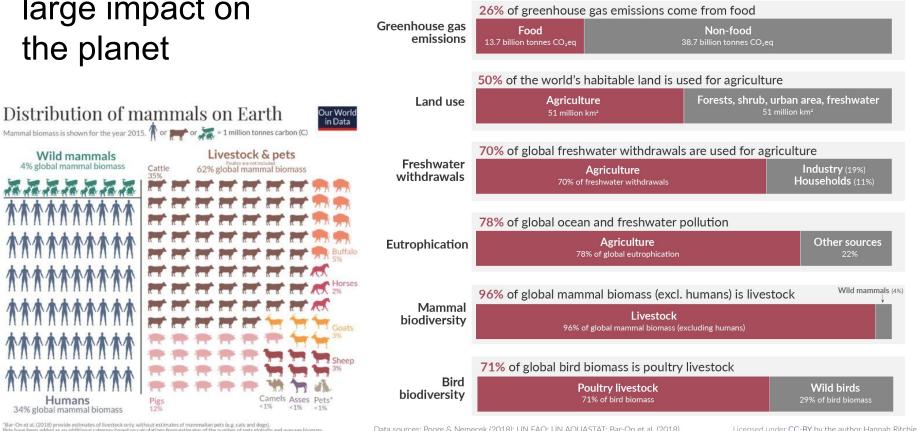
34% global mammal biomass

Livestock & pets

62% global mammal biomass

< 194

The environmental impacts of food and agriculture



Bar-On et al. (2018) provide estimates of livestock only, without estimates of mammalian pets (e.g. cats and dogs) Pets have been added as an additional category based on calculations from estimates of the number of pets globally and average biomass.

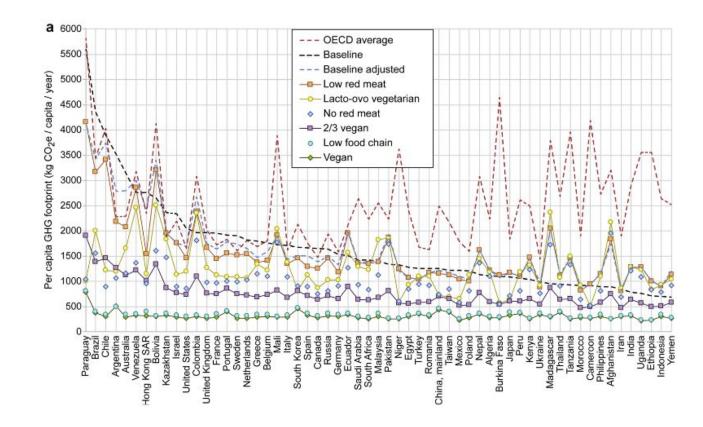
Pigs 12%

OurWorldinData.org - Research and data to make

Data sources: Poore & Nemecek (2018); UN FAO; UN AQUASTAT; Bar-On et al. (2018) OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the author Hannah Ritchie.

Per capita emissions per country

Food emissions don't exactly follow the normal trend of wealthier nation = higher emissions

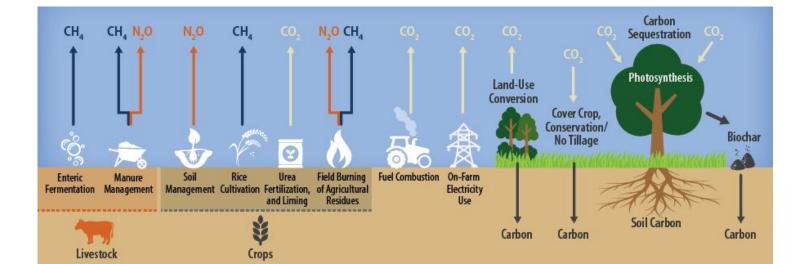


Agriculture accounted for 10% of the EU's total greenhouse-gas emissions in 2012. A significant decline in livestock numbers, more efficient application of fertilisers, and better manure management reduced the EU's emissions from agriculture by 24% between 1990 and 2012.

However, agriculture in the rest of the world is moving in the opposite direction. Between 2001 and 2011, global emissions from crop and livestock production grew by 14%. The increase occurred mainly in developing countries, due to a rise in total agricultural output. This was driven by increased global food demand and changes in food-consumption patterns due to rising incomes in some developing countries. Emissions from enteric fermentation increased 11% in this period and accounted for 39% of the sector's total greenhouse-gas outputs in 2011.

Agriculture: sources and sinks

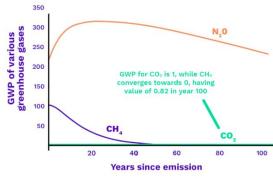
- Farming of plants and animals can capture as well as release CO2.
- Farming requires land that may have been used for other purposes
- Modern farming practices lead to far more emissions than reductions in GHGs



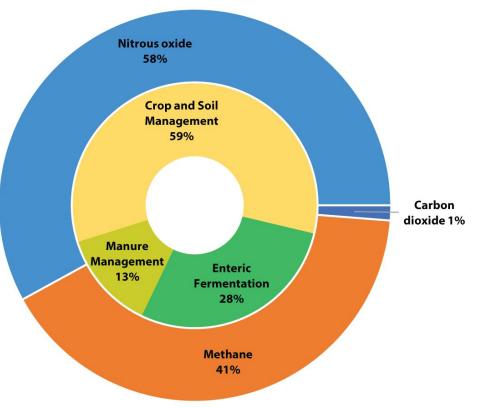
Emissions (direct) from agriculture

Carbon dioxide makes up only a small fraction of emissions from the agriculture industry.

Global Warming Potential (GWP) Changes Over Time

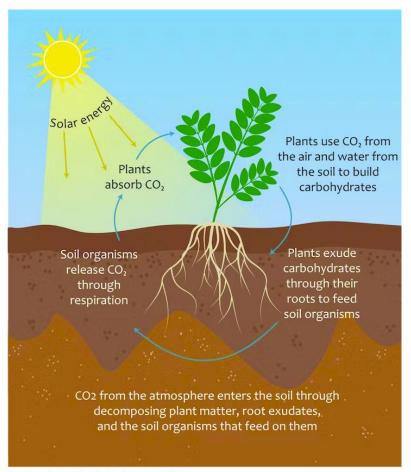


Source: Timma, Dace & Knudsen, Energies, MDPI, 2020



https://extension.missouri.edu/publications/g310

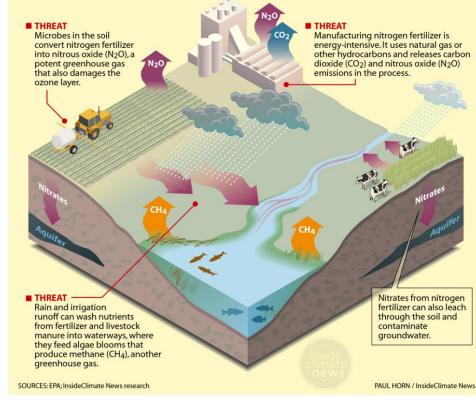
Soils store and release carbon through interaction with plants, animals, and microbes



Modern fertilizer production and use causes a variety of emissions, as well as other environmental problems.

The Triple Threat of Nitrogen Fertilizers

Synthetic nitrogen fertilizers, which are used heavily on corn, the country's most widely grown crop, contribute to climate change in three key ways.



https://insideclimatenews.org/news/24102018/infographic-far m-soil-carbon-cycle-climate-change-solution-agriculture/

Better agricultural practices (sometimes called regenerative farming) can help soil sequester more carbon.

Because of the large amount of land dedicated to farming, small changes can have big impacts.

https://insideclimatenews.org/news/24102018/infographic-far m-soil-carbon-cycle-climate-change-solution-agriculture/

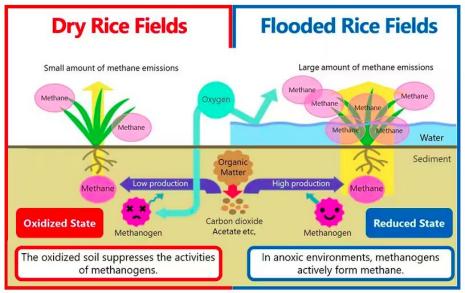
9 5 IG TECHNIQUES THAT CAN IMPROVE SOIL CARBON STORAGE INCLUDE 14 3 2 = 0 Cover crops Crop rotation No-till farming G Planting legumes or grasses between rows Rotating crops puts Not ploughing avoids nutrients depleted disturbing carbon in the 00 can help stop weeds by one crop back soil, and the ground by keeping the land into the soil by cover prevents weeds covered and enriches planting another and erosion. It also cuts the soil. the following year. farmers' fuel use. C 5 4 3 2 Compost Aaroforestry 0 Using manure and other Planting trees between organic waste as compost fields helps improve soil on fields avoids some organic carbon and avoids erosion. methane release, improves If the amount of water retention and carbon in the top 12increases soil carbon. 16 inches of soil was increased by 0.4% per year, it could counter **REGIONS WITH HIGHEST POTENTIAL TO STORE CARBON ON CROPLAND** the current annual Soil organic carbon after 20 years if sequestration is improved by 0.012 percent per year, in gigatons increase in CO₂, according to the 4 per 1000 Initiative. 31.5 23.3 23.2 10.7 10.5 9.9 9.1 6.8 North Europe Russia South East Asia South Asia Southeast Eastern and America America Asia Southern

Soil's Carbon Storage Capabilities Can Help Fight Climate Change Clever soil management practices can help to offset excess carbon dioxide in the atmosphere.

SOURCES: 4 per 1000 Initiative: Bar chart: Zomer et al., Scientific Reports, 2017

Africa
PAUL HORN / InsideClimate News

Rice paddies and their flooding is responsible for 10% of global methane release.



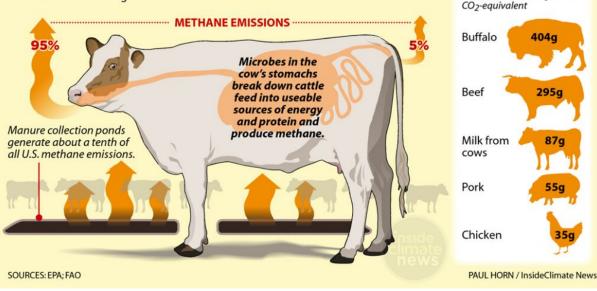
Mechanism of greenhouse gas emissions from agriculture (Source: NARO)

Enteric Fermentation and Manure

Digestive processes in ruminant animals such as cattle, sheep, goats, and buffalo, cause methane release.

Livestock-Based Methane Emissions

About a quarter of U.S. methane emissions come straight out of livestock, most of it from belching.



METHANE EMISSIONS

Global estimates in grams,

PER GRAM OF PROTEIN

Enteric Fermentation and Manure

Manure from large numbers of animals stored in piles creates anaerobic conditions and the release of methane and nitrous oxide.

Livestock-Based Methane Emissions METHANE EMISSIONS About a quarter of U.S. methane emissions come straight out of livestock, PER GRAM OF PROTEIN most of it from belching. Global estimates in grams, CO₂-equivalent METHANE EMISSIONS Buffalo 404a 95% Microbes in the cow's stomachs break down cattle Beef 295a feed into useable sources of energy and protein and Manure collection ponds produce methane. Milk from 87a generate about a tenth of all U.S. methane emissions. cows Pork 55a Chicken SOURCES: EPA; FAO PAUL HORN / InsideClimate News

Indirect emissions from agriculture

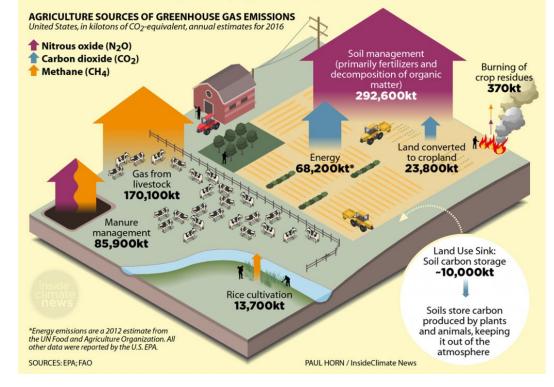
Electricity

Burning of biomass

Land use changes

How Farms Contribute to Climate Change

Agriculture today is responsible for nearly a quarter of the world's greenhouse gas emissions. It's also threatened by climate change and uniquely positioned to fight it.

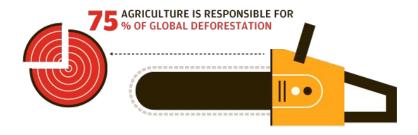


Indirect emissions from agriculture

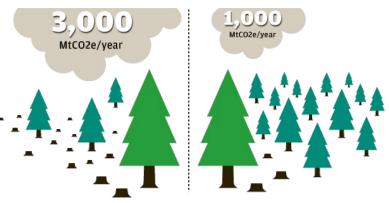
Electricity

Burning of biomass

Land use changes



IF TRENDS CONTINUE, ABOUT 10 MILLION KM2 OF LAND WILL BE CLEARED BY 2050 TO MEET FOOD DEMAND ALTERNATIVE PATHWAYS WOULD ONLY REQUIRE ABOUT 2 MILLION KM2 OF LAND WILL BE CLEARED

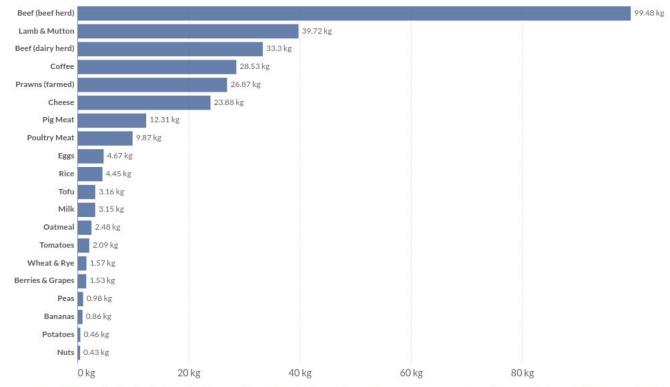


downtoearth.org

Emissions from specific foods

Greenhouse gas emissions per kilogram of food product

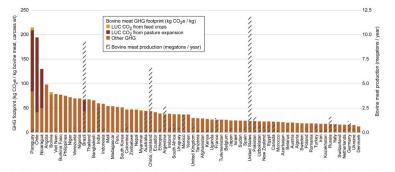
Emissions are measured in carbon dioxide equivalents (CO2eq). This means non-CO2 gases are weighted by the amount of warming they cause over a 100-year timescale.



Source: Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. OurWorldInData.org/environmental-impacts-of-food • CC BY Note: Greenhouse gases are weighted by their global warming potential value (GWP100). GWP100 measures the relative warming impact of one molecule of a greenhouse gas, relative to carbon dioxide, over 100 years.

Emissions per 100g of protein

Emissions estimates have wide variability due to different farming practices.



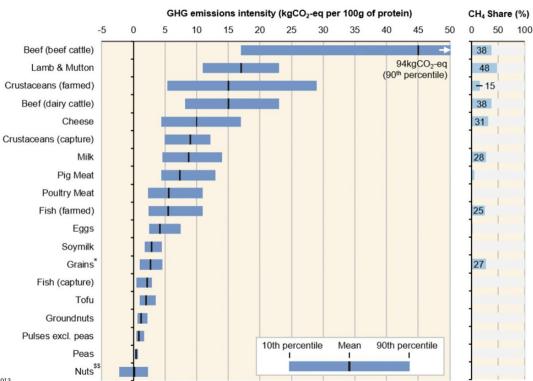
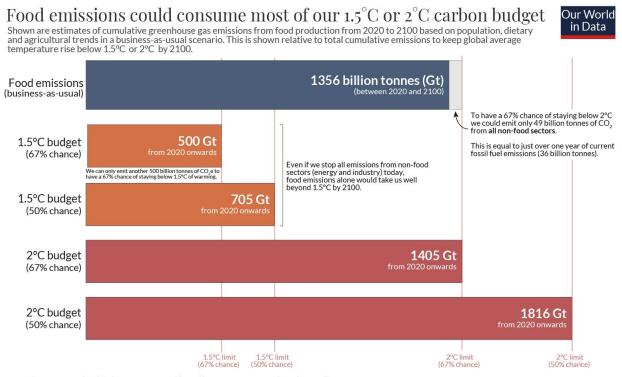


Fig. 3. Per-kilogram GHG footprints of bovine meat, by producing country, shown for countries that produced over 100 000 metric tons in 2011-2013.

Significant changes to agriculture are necessary to avoid unsustainable warming



Note: This is measured in global warming potential (GWP*) CO₂ warming-equivalents (CO₂-we). Source: Michael Clark et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*.

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Hannah Ritchie.

What needs to be done, according to the IPCC

A change in diets (and culture)

Shifting consumption towards plant-based diets has "high mitigation potential", says the report. There is *robust evidence* that "diets high in plant protein and low in meat and dairy" make for lower GHG emissions.

IPCC estimates with *high confidence* that shifts to sustainable healthy diets have a "technical potential" to reduce emissions by 3.6GtCO2e, with a range of 0.5 to 8GtCO2e.

Key enablers for these shifts could include creating "novel narratives" in the media and entertainment industry to "help to break away from the established values, discourses and the status quo". These might portray plant-based diets as healthy and natural, for example.

The IPCC report explores other measures that could be used to influence choices in the food sector, including taxes or carbon pricing on food, both of which it says would be "regressive", meaning they disproportionately burden poorer members of society. Instead, it points to options including marketing regulations, procurement policies, dietary guidelines, labelling and "nudges".

https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/

What needs to be done, according to the IPCC

New technologies

Beyond dietary changes, the report says there is *limited evidence* – but *high agreement* – that a suite of "emerging technologies" could bring "substantial reduction in direct GHG emissions from food production". These include plant-based alternatives to animal products, cultured meat, and "controlled environment agriculture", which it describes as "hydroponic or aquaponic cultivation systems that do not require soil".

These technologies typically have lower water, land and nutrient footprints, but as some of them are energy-intensive, they need to have access to low-carbon energy.

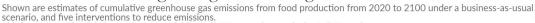
What needs to be done, according to the IPCC

Focus on highest emitters globally

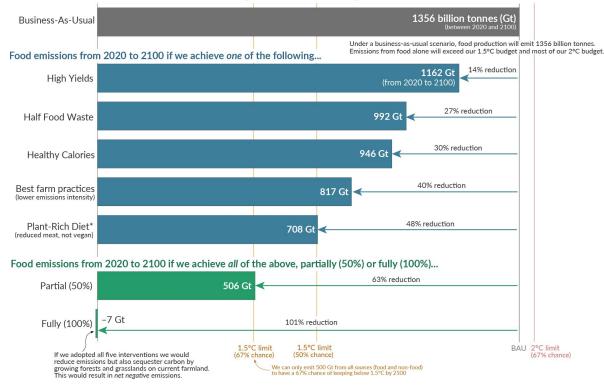
Global food supply chains have a strong influence on per-capita food consumption emissions, particularly for red meat and dairy, the report notes, such that the highest per-capita food-related emissions "do not correlate perfectly with the income status of countries". In other words, even relatively poorer countries may have a high per-capita food footprint.

As a result, the report says "it is crucial to focus on high-emitting individuals and groups within countries, rather than only those who live in high-emitting countries, since the top 10% of emitters live on all continents and one third of them are from the developing world".

How can we reduce global greenhouse gas emissions from food?



This is measured in global warming potential (GWP*) CO₂ warming-equivalents (CO₂-we).



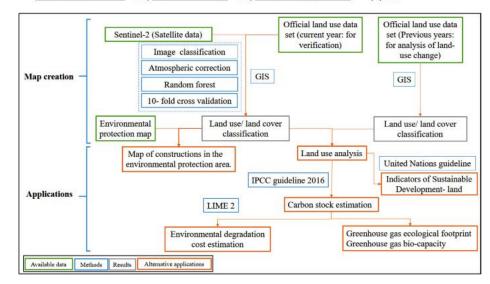
*Based on the EAT-Lancet Planetary Health diet which reduces but does not eliminate meat or dairy consumption. Source: Michael Clark et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*. OurWorldinData.org – Research and data to make progress against the world's largest problems. Licensed under CC-BY by the author Hannah Ritchie.

Monitoring land change to estimate emissions

Research article

Integrating remote sensing and machine learning into environmental monitoring and assessment of land use change

<u>Hong Anh Thi Nguyen</u> $a^{b} \boxtimes$, <u>Tip Sophea</u> $c^{de} \boxtimes$, <u>Shabbir H. Gheewala</u> $a^{b} \boxtimes$, <u>Rawee Rattanakom</u> $d \boxtimes$, <u>Thanita Areerob</u> $d \boxtimes$, <u>Kritana Prueksakorn</u> $c^{df} \oslash \boxtimes$



Tracking and predicting different types of emissions from soils

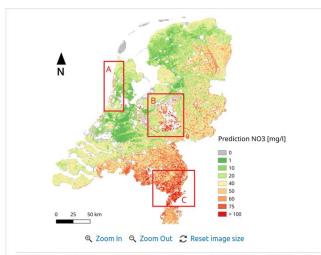


Figure 7. Map of nitrate concentrations in the root zone leachate for the year 2017. Areas A, B, and C are areas with high predicted concentrations, marked for discussion.

PAPER • OPEN ACCESS

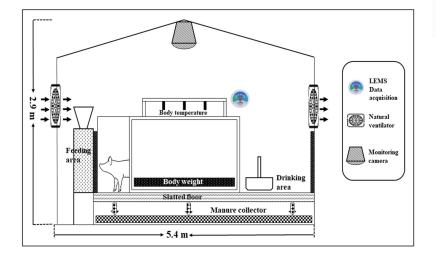
A machine learning based modelling framework to predict nitrate leaching from agricultural soils across the Netherlands

Job Spijker¹ D, Dico Fraters¹ D and Astrid Vrijhoef¹ Published 14 April 2021 • O 2021 The Author(s). Published by IOP Publishing Ltd Environmental Research Communications, Volume 3, Number 4 Focus on Reactive Nitrogen and the UN Sustainable Development Goals Citation Job Spijker *et al* 2021 *Environ. Res. Commun.* **3** 045002 DOI 10.1088/2515-7620/abf15f

Conclusions

Using our RF predictive modeling framework, we created a map of nitrate concentrations leached from the root zone of agricultural soils across the Netherlands for the year 2017. With our model, we interpolate the nitrate concentrations measured at the farm level on a national scale. In our model, the most important variables for the prediction are variables related to the present of grasslands (land use, crops), and variables related to altitude, soil (soil type, clay and organic matter content), groundwater level and N and P emissions to surface water. The explained variance and statistical

Tracking and predicting emissions from animals



Published: 14 February 2022

Modelling methane emissions from pig manure using statistical and machine learning methods

Jayanta Kumar Basak, Elanchezhian Arulmozhi, Byeong Eun Moon, Anil Bhujel & Hyeon Tae Kim 🖂

Air Quality, Atmosphere & Health 15, 575–589 (2022) | Cite this article 303 Accesses | 5 Citations | Metrics

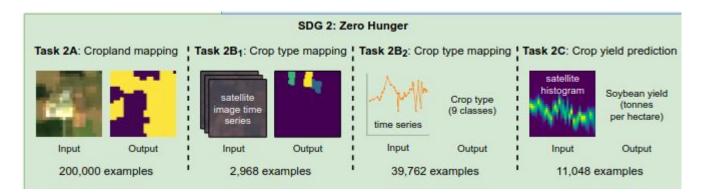
Conclusion

Measurements were carried out in three experimental pig's barns with three different types of concentrated diets to characterize manure production. The quantity of manure produced per pig, moisture content, DM, ash, and VS contents increased with the mass and feed intake of pigs. Body mass ranged from 60 to 90 kg a pig produced around 3.35 kg of manure per day consisting of 66% moisture content and 34% DM. The manure's ash content was 28% DM (0.47 kg pig⁻¹ day⁻¹), while the VS was 72% DM (1.15 kg pig⁻¹ day⁻¹). In the present study, the pigs' mass and the quantity of feed intake were used as explanatory variables to model the CH₄ production rate. Five statistical and ML algorithms were evaluated based on three statistical qualitative parameters for CH₄ emission modelling. The results showed that the regression-based models performed better than the ANN model. Moreover, the RR model was selected as the best model among those models in predicting CH₄ production. This priority for

Monitoring crops in order to increase yield and estimate emissions.

SUSTAINBENCH: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Christopher Yel Caltech	n* Chenlin Mer Stanford			oll [†] Erik Rozi [†] Stanford
Patrick Liu [†]	Jihyeon Lee [†]	Marshall Burke	David Lobell	Stefano Ermon
Stanford	Stanford	Stanford	Stanford	Stanford



Precision agriculture

"We propose a path towards more sustainable agriculture, considering plant development an optimization problem with respect to certain parameters, such as yield and environmental impact, which can be optimized in an automated way. Specifically, we propose to use reinforcement learning to autonomously explore and learn ways of influencing the development of certain types of plants, controlling environmental parameters, such as irrigation or nutrient supply, and receiving sensory feedback, such as camera images, humidity, and moisture measurements. The trained system will thus be able to provide instructions for optimal treatment of a local population of plants, based on non-invasive measurements, such as imaging"

Reinforcement Learning for Sustainable Agriculture

Jonathan Binas¹ Leonie Luginbuehl² Yoshua Bengio¹

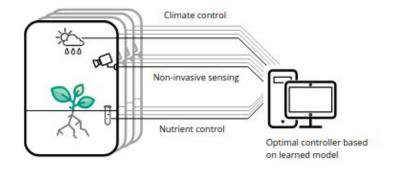


Figure 1. Illustration of the approach. After training in a controlled environment, the learned model can be used to provide optimal treatment recommendations in the field.

In general, approaches that increase efficiency on farms may help reduce emissions (but may not!)

Open Access Review

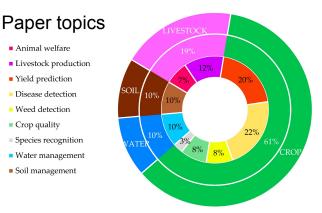
Machine Learning in Agriculture: A Review

by 😩 Konstantinos G. Liakos 1, 😫 Patrizia Busato 2, 😩 Dimitrios Moshou 1.3, 🚇 Simon Pearson 4 😳 and Q Dionysis Bochtis 1,* ☑ 0

- ¹ Institute for Bio-Economy and Agri-Technology (IBO), Centre of Research and Technology-Hellas (CERTH), 6th km Charilaou-Thermi Rd. GR 57001 Thessaloniki, Greece
- ² Department of Agriculture, Forestry and Food Sciences (DISAFA), Faculty of Agriculture, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
- ³ Agricultural Engineering Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- ⁴ Lincoln Institute for Agri-food Technology (LIAT), University of Lincoln, Brayford Way, Brayford Pool, Lincoln LN6 7TS, UK
- * Author to whom correspondence should be addressed.

Sensors 2018, 18(8), 2674; https://doi.org/10.3390/s18082674

Received: 27 June 2018 / Revised: 31 July 2018 / Accepted: 7 August 2018 / Published: 14 August 2018



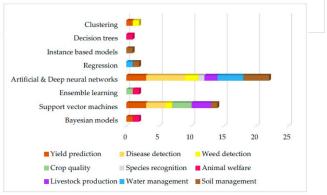
Animal welfare

Weed detection

Crop quality

Machine learning has emerged with big data technologies and high-performance computing to create new opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a comprehensive review of research dedicated to applications of machine learning in agricultural production systems. The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies. By applying machine learning to sensor data, farm management systems are evolving into real time artificial intelligence enabled programs that provide rich recommendations and insights for farmer decision support and action.

Keywords: crop management; water management; soil management; livestock management; artificial intelligence; planning; precision agriculture



Paper Deep Dive

Open Access Article

Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran

by 😵 Mostafa Emadi ¹ 🖾, 🍘 Ruhollah Taghizadeh-Mehrjardi ^{2,3} 🖓 😳, 😩 Ali Cherati ⁴ ⊠, 😵 Majid Danesh ¹ ⊠, 🍪 Amir Mosavi ^{5,6,7,*} 🖄 ond 😤 Thomas Scholten ^{2,8,9} ⊠ 💿

- ¹ Department of Soil Science, College of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
- ² Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, 72070 Tübingen, Germany
- ³ Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan 8951656767, Iran
- ⁴ Soil and Water Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari 4849155356, Iran
- ⁵ Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany
- ⁶ Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- ⁷ Department of Informatics, J. Selye University, 94501 Komarno, Slovakia
- ⁸ CRC 1070 Ressource Cultures, University of Tübingen, 72070 Tübingen, Germany
- ⁹ DFG Cluster of Excellence "Machine Learning", University of Tübingen, 72070 Tübingen, Germany
- * Author to whom correspondence should be addressed.

Remote Sens. 2020, 12(14), 2234; https://doi.org/10.3390/rs12142234

Received: 21 May 2020 / Revised: 6 July 2020 / Accepted: 9 July 2020 / Published: 12 July 2020

https://www.mdpi.com/2072-4292/12/14/2234

Goal: Predict the amount carbon stored in soil based on other factors of the land that normally correlate with it.

Brainstorm

What kind of data would you want to have to be able to approach this problem?

What kind of methods would you apply?

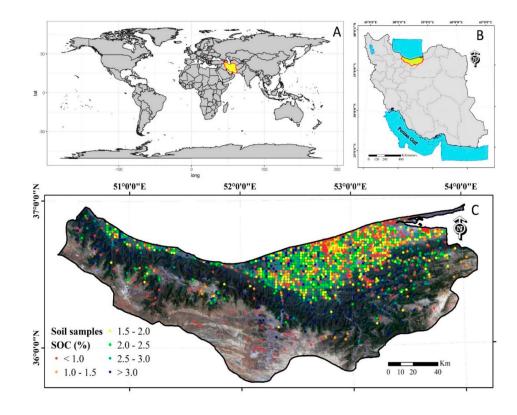
How would you measure success?

If successful, how could this system be useful?

Data: Target variable

Northern region of Iran where some on-the-ground tests of soil carbon have been made

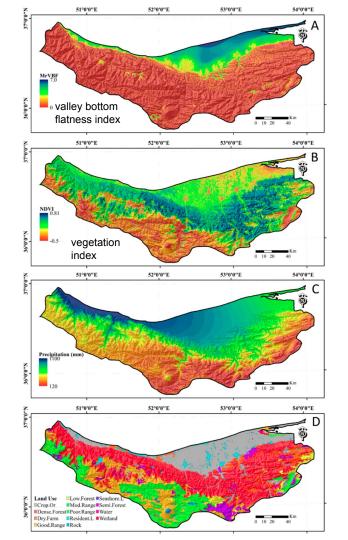
Dataset contains 1879 composite surface soil samples from two main sources (Figure 1). More than half of the data (1055 samples) were derived from five Master of Science (M.Sc.) research projects in the soil science department at Sari Agricultural Sciences and Natural Resources University (SANRU) [60,61,62,63,64]. These samples were collected using a simple random sampling scheme mostly in *uncultivated areas*. The rest of the dataset comes from soil surveys performed by the Agricultural Research Education and Extension Organization (AREEO) and the Ministry of Jahad-e-Keshvarzi in Sari, Northern Iran. These samples were mostly collected in *cultivated areas* spread across the province using a grid sampling scheme with a 2000 m grid interval.



Data: Predictors

The authors collected a wide range of data that could be predictive of soil carbon.

Regressors included variables derived from remotely sensed imagery (60 variables from Landsat 8 and MODerate-resolution Imaging Spectroradiometer, MODIS), terrain attributes (30 variables), climatic data (10 variables), and five categorical data (e.g., soil map and land use map).



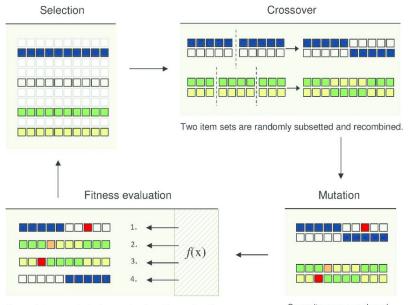
Methods: Feature selection

Genetic algorithm is used to pare down the list of predictors.

2.4. Selection of Auxiliary Variables Using Genetic Algorithms (GA)

Instead of taking all 105 environmental auxiliary variables into consideration for a predictive ML algorithm, the feature selection method reduces the number and collinearity of the auxiliary variables. The most informative auxiliary variables should be inserted into the algorithms with the aim of high accuracy of the ML algorithms for SOC prediction [9,16,25]. The selection of the significant environment auxiliary variables is a preprocessing step for ML algorithms to remove redundant and irrelevant variables. For this study, one of the most advanced algorithms for feature selection, namely the genetic algorithm (GA), was used to select the most appropriate auxiliary data to be fed as inputs to the ML algorithms [16]. GA is able to select those auxiliary data that are not only essential but improve performance as well. Moreover, GA can manage the nonlinear relationships between SOC and auxiliary data [70].

By mimicking natural biological evolution, the GA which is a heuristic search algorithm provides the best value for a function [51]. A GA feature selection process starts with an initial random population consisting of individuals. The individuals, representing subsets of auxiliary data, are encoded as binary in which 1 represents if the feature is selected and 0 otherwise [71]. Then three primary operations including selection, crossover, mutation repeat until a stopping criterion is reached. The selection operations were for selecting the two fittest individuals for reproduction (i.e., the solutions providing the lowest root mean squared error, RMSE). The crossover recombines two individuals to create new ones which may be better. The mutation operator introduces alteration in a small number of individuals. The process of selection, crossover, and mutation continues until a termination condition is satisfied [48,52]. Importantly, for each generation, it is necessary to assign a fitness value to each individual in the population so that the RMSE values are calculated by fitting the random forest model [46,48,52].



Item sets are evaluated according to a fitness function; results in turn influence selection probability in the next iteration.

Some items are replaced with items from the initial item pool.

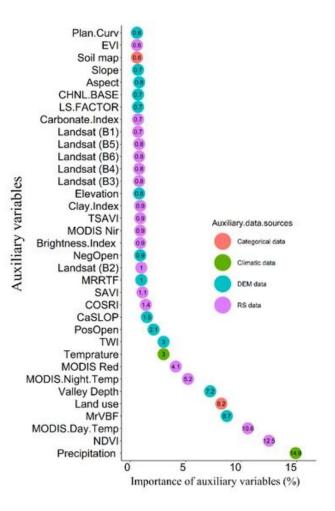
Methods: Feature selection

GA selected 35 predictors out of 105 environmental variables.

2.4. Selection of Auxiliary Variables Using Genetic Algorithms (GA)

Instead of taking all 105 environmental auxiliary variables into consideration for a predictive ML algorithm, the feature selection method reduces the number and collinearity of the auxiliary variables. The most informative auxiliary variables should be inserted into the algorithms with the aim of high accuracy of the ML algorithms for SOC prediction [9,16,25]. The selection of the significant environment auxiliary variables is a preprocessing step for ML algorithms to remove redundant and irrelevant variables. For this study, one of the most advanced algorithms for feature selection, namely the genetic algorithm (GA), was used to select the most appropriate auxiliary data to be fed as inputs to the ML algorithms [16]. GA is able to select those auxiliary data that are not only essential but improve performance as well. Moreover, GA can manage the nonlinear relationships between SOC and auxiliary data [70].

By mimicking natural biological evolution, the GA which is a heuristic search algorithm provides the best value for a function [51]. A GA feature selection process starts with an initial random population consisting of individuals. The individuals, representing subsets of auxiliary data, are encoded as binary in which 1 represents if the feature is selected and 0 otherwise [71]. Then three primary operations including selection, crossover, mutation repeat until a stopping criterion is reached. The selection operations were for selecting the two fittest individuals for reproduction (i.e., the solutions providing the lowest root mean squared error, RMSE). The crossover recombines two individuals to create new ones which may be better. The mutation operator introduces alteration in a small number of individuals. The process of selection, crossover, and mutation continues until a termination condition is satisfied [48,52]. Importantly, for each generation, it is necessary to assign a fitness value to each individual in the population so that the RMSE values are calculated by fitting the random forest model [46,48,52].



Methods: Models

The study compares a variety of regression techniques:

support vector machines (SVM), artificial neural networks (ANN), regression tree, random forest (RF), extreme gradient boosting (XGBoost), and conventional deep neural network (DNN)

Evaluation

 R^2

Lin's concordance correlation coefficient

Mean absolute error

Root mean square error

$$R^{2} = 1 - \left(\frac{\sum_{i=1}^{n} (Oi - p)^{2}}{\sum_{i=1}^{n} (Oi - O')^{2}}\right)$$
$$CCC = \frac{2 r \sigma_{o} \sigma_{p}}{\sigma_{o}^{2} + \sigma_{p}^{2} + [O' - P']^{2}}$$
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Pi - Oi|$$
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Pi - Oi)^{2}}$$

Results

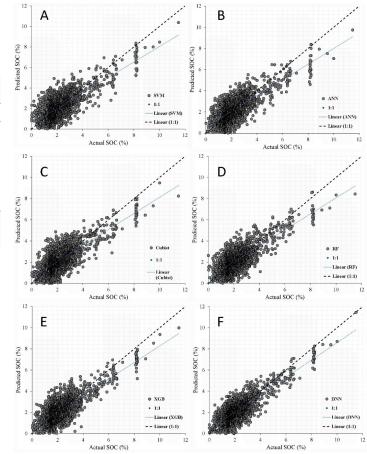
Results

Table 4. Comparisons of the accuracy of six machine learning models for validation dataset by 10-fold cross-validation (means ± standard deviation).

ML Algorithms	MAE	RMSE	R ²	CCC
SVM	0.69 ± 0.07	0.87 ± 0.05	0.53 ± 0.05	0.76 ± 0.05
ANN	0.67 ± 0.08	0.85 ± 0.07	0.55 ± 0.05	0.77 ± 0.06
Cubist	0.66 ± 0.06	0.83 ± 0.04	0.57 ± 0.04	0.78 ± 0.04
RF	0.65 ± 0.03	0.82 ± 0.03	0.58 ± 0.05	0.78 ± 0.03
XGB	0.66 ± 0.04	0.83 ± 0.04	0.57 ± 0.03	0.78 ± 0.04
DNN	0.59 ± 0.06	0.75 ± 0.06	0.65 ± 0.05	0.83 ± 0.06

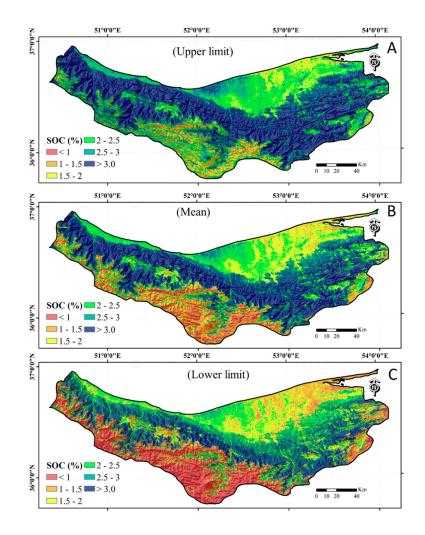
ML: machine learning; SVM: support vector machine; Cubist: regression tree; XGBoost: an extreme gradient boosting; RF: random forest; ANN: artificial neural networks; DNN: deep neural networks; MAE: mean absolute error; RMSE: root mean square error; R²: the coefficient of determination; CCC: Lin's concordance correlation coefficient.

The DNN model outperforms other models by delivering 65% of the SOC variability. The DNN algorithm showed the lowest mean MAE value (0.59) of the six studied ML algorithms. The DNN outperformed with the lowest mean RMSE value (0.75).



Application of the model

"The predicted SOC map could be used as a base-line for further studies and projects related to the C sequestration development both locally in soils of the Mazandaran province and globally at the worldwide scale."



Further Resources

Overviews of emissions from agriculture:

https://www.wri.org/insights/everything-you-need-know-about-agricultural-emissions

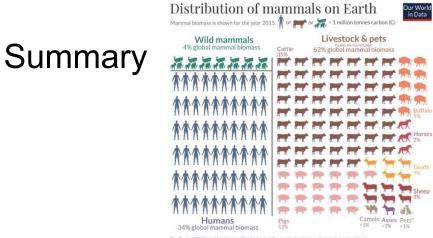
https://ourworldindata.org/environmental-impacts-of-food

IPCC recommendations for the food system: https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-cli mate-change/ (item 6)

Scientific review of GHG sources and opportunities for change in food production and consumption <u>https://www.science.org/doi/full/10.1126/science.aaq0216</u>

"Future cookbook" article:

https://grist.org/fix/food-farming/climate-cookbook-sustainable-recipes/



"Bar-On et al. (2018) provide estimates of livestock only, without estimates of mammalian pets (e.g. cats and dops). Pets have been doed as an additional classroy have on calculations from estimates of the number of pets globally and average biomass. Data source: Bar-One al. (2018) The biomass distribution for bar to images sources from the Noan Fried. Our WorldfordDatace: Research and table to make progress against the work? Urgest publies.

