Extreme Weather Event
Prediction

Enhancing weather forecasts



Assignments

Keep working on your projects!

Poll on project work day

Homework #4 - Dengue fever cases

Due Monday the 17th by midnight



Climate change in the news




Climate change in the news

H&M MOVE PARTNERS WITH LANZATECH
TO LAUNCH CAPSULE COLLECTION USING
CAPTURED CARBON EMISSIONS

This is the stuff of science fiction: LanzaTech diverts carbon emissions

heading for the atmosphere, traps them, and turns them into thread. In a
leap towards innovating sportswear, H&M Move partners with the
breakthrough material science company for a drop arriving at hm.com/move
on April 6.

Using three simple steps, LanzaTech captures carbon emissions from steel mills, traps them in bioreactors
and converts them into the same building blocks that conventional polyester is made of. This revolutionary
solution helps reduce pollution and limits the use of virgin fossil resources needed to make new products.

H&M Move's upcoming three-piece drop for women includes a jumpsuit, a top and a pair of tights, partlx
made of LanzaTech CarbonSmart™ polyester with a DryMove™ finish. The sleek, all-black garments draw on
the contemporary athluxury movement and feature contrasting seams and creative cut-outs.
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Learn to mosquito habitats

Tip #1: Wear long sleeves, pants, socks,
and shoes. Apply an effective insect
repellent to exposed skin.
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Recap

Prof. Laure Zanna



Geophysical Research Letters’

Research Letter (3 Free Access

Data-Driven Equation Discovery of Ocean Mesoscale Closures

Laure Zanna ¥ Thomas Bolton

First published: 06 August 2020 | https://doi.org/10.1029/2020GL088376 | Citations: 55
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https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088376
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Goal: find an equation that relates small scale physics to
large scale, in order to correct coarse-grain simulations
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Plan: Use “relevance vector machine” regression

e “Equation discovery” - provide a list of terms and it will find weights for each
term
e Requires some ‘hand-engineering’

e Produces more interpretable result Basis functions]
e some memory constraints Divergence:0 = V - u
Vorticity: ¢ = V x u
“filtered velocities using up to second order for both Shearing ) _ oa | 0%
spatial derivatives and polynomial products” Deformation:™ = gy =~ 6z

Stretching D=9 _ 0
Deformation: ™ =~ 8z dy

Library of functions S —
as divergence of ¢z (ua ’U)
flux:




RVM regression

e Gaussian prior distributions for each regression

weight .
_ Sparse Bayesian
e Allows for a measure of uncertainty learning, using
e Terms are iteratively pruned from the equation if relevance vector
width of the distribution is too large machines (RVMs)
e This uncertainty threshold is the only parameter S w; s (@, 0)
that requires setting 7




Overall process

(a) Relevance Vector Machine Schematic
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(a) Kinetic Energy during 10 year spin-up
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(b) Isotropic Kinetic spectra over 10 year
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Extreme weather events will become more common

June-to-August frequency of 1-in-10 year soil moisture drought — median

(9) At 1.5°C global warmlng (h) At 2.0°C global warming (i) At 4.0°C global warming

FAQ 8.2: Causes of more severe floods from climate change

Flooding presents a hazard but the link between rainfall and flooding is not simple.
While the largest flooding events can be expected to worsen, flood occurrence may decrease in some regions.
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Importance of prediction

< Day 2 Outlook Day 4 - 8 Outlook >

Apr 12, 2023 0730 UTC Day 3 Severe Thunderstorm Outlook l Tornado Products
Updated: Wed Apr 12 ©7:22:53 UTC 2623 (Print Version | @ | %) I .
Probabilistic to Categorical Outlook Conversion Table y
[ Pop. [ cities [J cwAs [J RFCs [ Interstates [] Counties D ARTCC [J FEMA [ Tribal X Tornado ex_pc(ted' Seek shelter. . 3
( A tornado is occurning or will shortly at this
location on the map

ﬁ Tornado Watch

Tornado possible. Be prepared.

Weather conditions favor thunderstorms
capable of producing tornadoes at this
location on the map.

Emergency Alert

Tornado warning
815pm, T 5
Check local media. - NWS

Prediction and alert systems give people
‘ | T time to prepare. The earlier the better, but
B b = = accuracy matters too.

o Categorical Outlook Legend:
FORECASTER: MOSIER T i 1: MRGL 2:5LGT.
NOAA/NWS Storm Prediction Center, Norman, Oklahoma 3 ENH 4: MDT 5: HIGH

Day 3 Risk Area (sq. mi.) Some Larger Population Centers in Risk Area

SLIGHT 77,617 10,924,275 Dallas, TX...Fort Worth, TX...Oklahoma City, OK...Tulsa, OK...Arlington, TX...
IWARGINALIN] 84701 4,891,979 Lincoln, NE...Overland Park, KS...Waco, TX...Olathe, KS..Killeen, TX...

orecast Discussion




Challenge of weather prediction



http://www.youtube.com/watch?v=6ES_MIJQH_A

How predictions are done

Numerical simulations predict future weather

using physics and dynamics to mathematically o, EYE ON THE TROPICS | FORECAST MODELS

describe the atmosphere's behavior oauss aauETon
‘y&%@ws_-mc_@gwuu

Models cover points over a large area, from the A 7

Earth's surface to the top of the atmosphere. AV

. TAMW \ ¢
They start with current weather data and run
forward

Data is gathered from weather balloons
launched around the globe twice each day;, in
addition to measurements from satellites, Ensembles based on different initial
aircraft, ships, temperature profilers and conditions or model
surface weather stations.

www.nssl.noaa.gov



http://www.nssl.noaa.gov

Paper Deep Dive

Deep Learning Models for Predicting Wildfires from
Historical Remote-Sensing Data

Fantine Huot"!:2 R. Lily Hu' Matthias Ihme?  Qing Wang!
fantine@stanford.edu rlhu@google.com
John Burge!  Tianjian Lu'  Jason Hickey!  Yi-Fan Chen'  John Anderson'

!Google Research
2Stanford University

https://arxiv.orq/pdf/2010.07445.pdf



https://arxiv.org/pdf/2010.07445.pdf

Motivation

In 2019, 775,000 residences across the United States were flagged as at an
“extreme” risk of destructive wildfire, amounting to an estimated reconstruction
cost value of $220 billion dollars.

Wildland fires have a significant impact on the global climate, representing 8 billion
tons or 10% of global CO2 emissions per year.

Furthermore, the health impact due to wildfire aerosols is estimated at 300,000
premature deaths globally per year.

There is a real need for novel wildfire warning and prediction technologies
that enable better fire management, mitigation, and evacuation decisions.



Goal

Historically, wildfire likelihood has been based on fire behavior modeling across
simulations by varying feature parameters (e.g. weather, topography) that
contribute to the probability of a fire occurring.

Goal: Predict wildfire burning (over the next few days) in a specific location using
machine learning



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

What difficulties might you face?



Data

Aggregated nearly a decade of satellite observations, combining historical wildfire,
terrain, vegetation, and weather data to train a deep learning model.

Need data that has
-historical record for training

-high spatial resolution and regular updates for future prediction



collection of drought
indices derived from the
GRIDMET dataset,
sampled at 4 km

Data

Collection of daily surface fields of
temperature, precipitation, winds,
and humidity at 4 km resolution

daily fire mask
composites at 1
km resolution

resolution every 5 days since 1979 since 2000
since 1979
Shuttle Radar }
Topography
Mission (SRTM), }
Sampled at 30 m wind wind minimum maximum
elevation drought vegetation precipitation  humidity direction velocity temperature temperature fire mask
resolution
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a collection of vegetation indices
sampled at 500 m resolution every
8 days since 2012




Data problem

Different spatial resolutions, temporal resolutions, and temporal extents.



Data problem

Different spatial resolutions, temporal resolutions, and temporal extents.

The data is resampled to 1 km resolution, the resolution of the labels. From this
data we sample 128 x 128 tiles at 1km resolution. The region of study is restricted
to the contiguous United States from 2012 to 2020.

Temporal resolution ?7?



Framing the problem



Framing the problem

i*-
X y

(a) Image segmentation

(b) Image segmentation

siathiazsteated Lbels, (c) Sequence segmentation

Figure 2: The fire likelihood estimation problem is framed as three machine learning tasks: (a) an
image segmentation problem, where the input features are taken one day prior to a fire. (b) an image
segmentation problem with aggregated fire masks, where the input features are taken one day prior
to a fire, and the fire masks are aggregated over a week to capture the total burn area, and (c) a
sequence segmentation problem. The input features are arranged in week-long sequences to capture
the time-component of the data.

“segmentation”?



Framing the problem
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(b) Image segmentation
with aggregated labels.

y

Xt Xl*n y

(a) Image segmentation (c) Sequence segmentation

The dataset for experiment 1 has about 110,000 samples in the training set, 10,000
samples in the validation set, and 10,000 samples in the testing set.

The data sets for experiments 2 and 3 have about 35,000 samples in the training set,
5,000 in the validation set, and 5,000 in the testing set.



Model(s)



Model(s)

encoder bottieneck decoder

Convolutional “auto”encoder



What an autoencoder really is
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In a true autoencoder, the model is trained to reproduce its input



Model(s)

encoder bottieneck decoder

Convolutional “agte~ereoeder encoder/decoder



Model(s)

Output: 3D probability

g P o Input: 3D image
) b i maps for each class
v = > » s
. ) - . summation (skip connection)
g - > = Concat
= RS == Conv +ReLu
X Yl B Max pool
X

analysis path synthesis path I Up-conv
(encoder) (decoder)

encoder bottleneck decoder y

Convolutional U-net



Model(s)

Convolutional LSTM

CHNN

Conv LSTM

-

Conv LSTM

Conv LSTM

4 .
{ CNN \ / CNN \
}f.| Xl”




Model(s)

Convolutional U-net LSTM

Conv LSTM Conv LSTM L Conv LSTM
4 I. \
AN
\ \\.. \
CNMN | CHNM CMNMN
xl xl*'l xl-’rZ




Training problem!

The vast majority of pixels do not have fire.



Training problem!

The vast majority of pixels do not have fire.

Use “weighted cross-entropy loss” to overcome the class imbalance.

CE = —(ylogy + (1 —y)log(1 — 3y))

WCE = —(Bylog(y) + (1 — y) log(1 — 3))

VAN

true class
label

model
prediction



Training

e Hyperparameters explored via grid search:
Model depth

Number of filters

Batch size

Learning rate

Beta, weight of positive class

O O O O O

Evaluated on validation set according to AUC



Perfect ROC curve relevant elements
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Intersection over Union

How many retrieved How many relevant
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Precision = Recall = ——

Area of Overlap
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Results

Experiment Model
Daily Segmentation Autoencoder
U-Net
Aggregated Segmentation  Autoencoder
U-Net
Aggregated Segmentation  Autoencoder LSTM
with Sequential input U-Net LSTM




Results

Experiment Model AUC Precision Recall IoU

Daily Segmentation Autoencoder 0.83 0.53 0.12 0.52
U-Net 0.72 029 0.08 0.52
Aggregated Segmentation  Autoencoder 055 1030 0.05 0.50
U-Net 0.54 0.29 0.05 0.50
Aggregated Segmentation  Autoencoder LSTM  0.58  0.49 0.05 0.51

with Sequential input U-Net LSTM 0.60 0.48 0.03 0.50




labels

Results

predictions

(a) Image segmentation results from the autoencoder model on the test data with daily active fire labels.
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(b) Image segmentation results from the autoencoder LSTM model on the test data with aggregated fire labels.

“The low values are indicative of misclassified pixels at the segmentation boundary between fire and non-fire,
or very small fires not being detected, and thus not representative of the overall performance of the models to
predict the presence of fire.”

“Even without exact segmentation predictions, identifying these regions ahead of time would allow forestry
management to allocate resources to specific target regions.”



Results
Experiment Model AUC Precision Recall IoU

Daily Segmentation Autoencoder 0.83 0.53 0.12 0.52
U-Net 0.72 029 0.08 0.52
Aggregated Segmentation  Autoencoder 033 0630 0.05 0.50
U-Net 0.54 0.29 0.05 0.50
Aggregated Segmentation  Autoencoder LSTM  0.58  0.49 0.05 0.51
with Sequential input U-Net LSTM 0.60 048 0.03 0.50

“We observed more severe overfitting with the aggregated segmentation map, likely due to the a smaller
dataset size.”

“These experiments would likely improve from data augmentation techniques, for example, by adding noise
to the input features. Another idea would be to increase the time span of the data sets, but this would involve
combining multiple data sources for some of the input variables due to limited temporal coverage — many
satellites started collecting data only within the past few years. Another future step is to expand these
experiments beyond the United States to a global scale.”



Framing the problem

“Identifying regions that have high likelihood for wildfires is a key component of land and
forestry management and disaster preparedness.”

“In particular, assessing the fire likelihood — the probability of wildfire burning in a
specific location — would provide valuable insight for forestry and land management,
disaster preparedness, and early-warning system”

“A use case for models trained on this compiled data is to predict the likelihood of fires
given recent remote sensing data.”

“Positive events are only labeled when there are actual fires, but the dataset also
contains tiles with high fire likelihood that did not have actual fires, such as days before
fires or neighboring areas that did not catch fire because firefighters intervened”



5 Conclusions

We demonstrate the potential of deep learning approaches for estimating the fire likelihood from
remote-sensing data. We create a data set by aggregating nearly a decade of remote-sensing data,
combining features including weather, drought, topography, and vegetation, with historical fire
records. Our trained models can successfully distinguish between fire and non-fire conditions. Going
forward, this data-driven approach could be valuable for wildfire risk estimation, and could be
incorporated into wildfire warning and prediction technologies to enable better fire management,
mitigation, and evacuation decisions. Beyond the wildfire likelihood problem, the described workflow
and methodology could be expanded to other problems such as estimating the likelihood of regions
to droughts, hurricanes, and other phenomena from historical remote-sensing data.



Further resources

https://www.quantamagazine.org/machine-scientists-distill-the-laws-of-physics-fro
m-raw-data-20220510/

Why rain is hard to predict (DeepMind)
https://www.youtube.com/watch?v=snCo0Z0dt-k



https://www.quantamagazine.org/machine-scientists-distill-the-laws-of-physics-from-raw-data-20220510/
https://www.quantamagazine.org/machine-scientists-distill-the-laws-of-physics-from-raw-data-20220510/
https://www.youtube.com/watch?v=snCo0Z0dt-k

Tornado Products

Summary B il e

Tornado expected! Seek shelter.
{ fiss . A tornado is occurning or will shortly at this

location on the map

Sparse Bayesian ) A ' - ﬁi‘:’;‘;‘,‘:ﬁ’i‘lﬁw

learnin a. usi ng A Weather conditions favor thunderstorms

o ! o — | capable of producing tormadoes at this

relevance vector ' J Yt location on the map.
machines (RVMs) ‘

X
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(a) Image segmentation (b) Image segmentation

with aggregated labels. (c) Sequence segmentation



