Tracking Greenhouse Gas
Emissions

Estimating and Controlling Transportation Emissions



Assignments

Brightspace discussion question:

“Which do you think plays a bigger role in driving greenhouse gas reductions:
government or companies? Why?”

Due this Friday by S5pm.

Second programming assignment on predicting building energy use

Due Friday the 17th by midnight.



Climate change in the news




Climate change in the news

New York Uber and Lyft in New York required to be

Gloria Oladipo
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f

zero-emission by 2030, officials say

Mayor Eric Adams announced the initiative was part of the
‘Working People’s Agenda’ at his second state of the city address

Yy 2

© Uber and Lyft both shared statements indicating support for the coming change, the Verge
reported. Photograph: Robyn Beck/AFP/Getty Images

Uber and Lyft vehicles in New York City will be required to be zero-emission
by 2030, New York officials announced on Thursday.

The decision could affect the 100,000 for-hire vehicles operating throughout
New York.

New York’s mayor, Eric Adams, announced the initiative as part of his
“Working People’s Agenda” while giving his second state of the city address,
according to a city press release.

“Today, we are announcing that Uber and Lyft will be required to have a
zero-emissions fleet by 2030. That’s zero emissions for over 100,000 vehicles
on our city streets,” announced Adams, adding that Uber and Lyft support
the transition and that the shift will come at no additional cost to drivers.

“We’re also encouraging New Yorkers who drive to make the switch to
electric vehicles as well, adding charging stations in all five boroughs.”

Uber and Lyft have already announced their own goals when it comes to
having 100% electric vehicle fleets by 2030, reported Bloomberg News.

Both companies have attempted to entice drivers to trade in emitting cars for
electric vehicles using perks and incentives.

Uber is offering drivers who use an electric vehicle an extra $1 earned for
their ride and partnered with car rental company Hertz to offer electric
vehicle rental opportunities.

Lyft has offered similar promotions and promised to expand electric vehicle
rental opportunities for drivers who are not able to purchase a new car.

But only 1% of ride share drivers in New York use electric vehicles as of
September, reported Bloomberg.

California passed similar rules that would require ride share drivers to use
electric vehicles by 2030.



Recap

Total greenhouse gas emissions
Greenhouse gas emissions' are measured in carbon dioxide-equivalents (COz2eq)? .
Emissions from land use change — which can be positive or negative — are taken into account.
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Transportation emissions make up 16% of global total

World Greenhouse Gas Emissions in 2016
Total: 49.4 GtCO e

Sector End Use/Activity

Road 11.9%
:ul. air, n:hl’ 4.3%
1
i
G Buildings 17.5%
Electrici
[+4 3. hoat ty 30.4%
w e Unallocated fuel
2 combustion 7.8%
w
Iron & steel 7.2%
Chemical &
petrochemical 5.8%
Other industry
(including the 12.3%
agriculture energy)

Fossil fuels 5.6%

Source: Greenhouse gas emissions on Climate Watch. Availoble ot: https./www.climatewatchdata.org



Breakdown of U.S. transport emissions

Rail Other

Water 2% 3%
6%

The largest sector contributing to
transportation emissions is personal car use.
Aviation is the worst per distance emitter.

Automohiles

Air 30%

1% Carbon footprint of travel per kilometer, 2018

The carbon footprint of travel is measured in grams of carbon dioxide-equivalents' per passenger kilometer. This
includes the impact of increased warming from aviation emissions at altitude.
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Source: UK Department for Business, Energy & Industrial Strategy. Greenhouse gas reporting: conversion factors 2019. CccBY
. . . 27% Note: Data is based on official conversion factors used in UK reporting. These factors may vary slightly depending on the country, and assumed
U.S. carbon emissions from transportation,

2005 (Source: EIA, 2007b).

occupancy of public transport such as buses and trains.



Breakdown of global transport emissions over time

Where do transport emissions come from?

GHG Emissions [GtC0.eq/yr]
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Global CO, emissions from transport Our World
This is based on global transport emissions in 2018, which totalled 8 billion tonnes CO..
Transport accounts for 24% of CO, emissions from energy.
74.5% of transport emissions
come from road vehicles
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“‘Average annual greenhouse gas emissions growth
between 2010 and 2019 slowed compared to the previous
decade in energy supply (from 2.3% to 1.0%) and industry
(from 3.4% to 1.4%), but remained roughly constant at
about 2% per year in the transport sector.” -IPCC



Transport emissions by country

The US is the biggest transportation emitter

Greenhouse gas emissions of the
transportation sector worldwide in 2021, by
select country (in million metric tons of
carbon dioxide equivalent)

Worldwide; European Commission;
EDGAR/JRC; Expert(s) (Crippa et al.); 2021
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How are transportation emissions calculated?



How are transportation emissions calculated?

“In 1990, the Federal Clean Air Act was amended in an effort to greatly reduce air
pollution. As a result, the Environmental Protection Agency devised a set of
emissions standards to minimize the amount of hazardous air pollutants released
by motor vehicles. This means your car may have to undergo periodic testing to
ensure it's within EPA standards and is limiting its negative impact on the
environment.”

nationwide



How are transportation emissions calculated?

Urban cycle test:

» Accelerate to 9mph in four seconds

» Cruise at 9mph for eight seconds

» Brake to rest in five seconds

» Accelerate to 20mph over 12 seconds
« Cruise at 20mph for 24 seconds

» Brake to rest in 11 seconds

» Accelerate to 31mph over 26 seconds
» Cruise at 31mph for 12 seconds

» Brake to 22mph over eight seconds

» Cruise at 22mph for 13 seconds

» Brake to rest in 12 seconds

carthrottle.com



How are transportation emissions calculated?
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Emissions of Carbon Dioxide in the Transportation Sector, Motor Vehicle Miles Traveled,
and Emissions per Mile Traveled by Light-Duty Vehicles Measured as a Percentage of
Their Value in 1975
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nearly as much as
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because gains in fuel
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Getting more accurate data



http://www.youtube.com/watch?v=h-Et2SNvXlI

The need to reduce transportation emissions
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IPCC projections for different warming scenarios
show the need for a reduction in how much
carbon is emitted by transportation methods.

Figure 3.16 Global CO, emissions in transport by mode in the Sustainable Development
Scenario, 2000-70
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Notes: Dotted lines indicate the year in which various transport modes have largely stopped consuming fossil fuels

and hence no longer contribute to direct emissions of CO; from fossil fuel combustion.

Residual emissions in

transport are compensated by negative emissions technologies, such as BECCS and DAC, in the power and other

energy transformation sectors.



Reducing emissions from transportation



Reducing emissions from transportation

e Reduce amount of miles traveled

e Convert from high emissions forms of travel to low (aviation or single-person
driving to land transport and public transportation)

e Lower emissions of fossil fuel-burning vehicles

e Switch to electric vehicles (with clean power grids)



E-bikes and scooters as alternatives to cars

The Weather Amid rising gas prices this year, many commuters have made the switch to e-bikes and
Network scooters, a move that has potential to drastically slash emissions in the process.

This new transportation trend has caught on in major Canadian cities, with the
comparably affordable price of e-bikes and scooters seen by many customers as a way
to offset historically high costs at the pumps.

. ' ]
Boom in e-bikes and scooters has
potenthl to put a big dent'in
emissions

Other converts have been won over by the flexibility e-bikes and scooters offer in terms
of parking, storage, and navigability in traffic.

A study released earlier this year determined that the CO2 emissions produced by the
< M.A. chquemcun energy required to run e-bikes average about 22 g/km, while gas-powered cars emit

Published on Nov. 1, 2022, 12:43 PM more than 250 g/km'

The research, which focused on e-bike use in England, determined that 24.4 million tons
of CO2 emissions could be avoided by adopting a greater use of e-bikes, or a savings of
as much as 750 kg of CO2 per person yearly.



E-bikes and scooters as alternatives to walking...
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"Shared e-scooters and e-bikes in the city of Zurich primarily replace more
sustainable modes of transport-walking, public transport, and cycling. This means
that they emit more carbon than the means of transport they replace," says Daniel
Reck. (Credit: )



Increasing fuel efficiency: car size
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Electric vehicles

I
DRIVI NC EVS What are the reasons to

want a hybrid instead of fully

/> ﬂ \ electric vehicle?

w -



http://www.youtube.com/watch?v=fIvnKKPERZk

Electric vehicle adoption

EVs are now more than 13% of the  oii demand avoided by EVs and FCvs
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Life Cycle Analysis (LCA)

Life Cycle Analysis refers to the process calculating emissions for a product based
on the full supply, production, and disposal chain.

LCA-Based Vehicle Emissions
Regulatory Focus

Raw Material Extraction

Current Vehicle Emissions

Regulatory Focus

o)’ WorldAutoSteel



Life Cycle Analysis of Electric vs Gas Cars

Renewable and Sustainable Energy Reviews

R AR 1 Volume 159, May 2022, 112158

ELSEVIER nghllghts
s : - » Quantification of the CO,-equivalent greenhouse gas emissions of 790

TOtal COz—.equwal?nt llfe_CyCle €missions from different commercially available vehicle variants.

commercially available passenger cars

» The total life-cycle emissions of hybrid and electric vehicles are reduced by

Johannes Buberger * i, Anton Kersten 2® © 5, Manuel Kuder ? Richard Eckerle ?, up to 89% compared to internal combustion engine vehicles.
Thomas Weyh ? Torbjérn Thiringer °

» Modern battery recycling techniques can counterbalance the production
Show more emissions by about 60% to 65%.
Add to Mendel Sh 93 Cit : :
- SiSeE iy S e » Vehicles powered by renewable fuels, such as compressed biogas, have a

https://doi.org/10.1016/j.rser.2022.112158 » Get rights and content » similar climate change impact as electric vehicles.

Under a Creative Commons license » ® open access



Opportunities for ML to measure and reduce transportation
emissions



Opportunities for ML to measure and reduce transportation
emissions

Science of The Total Environment .
Volume 737, 1 October 2020, 139625 )

ELSEVIER

Increasmg accuracy of emissions Modelling of instantaneous emissions from

inventories diesel vehicles with a special focus on NOy:
Insights from machine learning techniques

Clémence M.A. Le Cornec ?, Nick Molden ®, Maarten van Reeuwijk ? Marc E.). Stettler® o =

Show more

On-road emissions
variability

Highlights

» First use of machine learning on a large dataset of on-road vehicle emissions

» Clustering groups vehicles with similar emissions behaviour

» Instantaneous emissions models developed on clusters to reduce number of

models

» Artificial neural networks and non-linear regression have comparable
accuracy.

» Fast instantaneous models can be used for high resolution emissions
inventories.



Opportunities for ML to measure and reduce transportation
emissions

Making routes more efficient, given other constraints

Abstract—Providing ride-hailing services with electric vehicles
can help reduce greenhouse gas emissions and solve the last
mile problem. This paper develops a reinforcement learning
based algorithm to operate a community owned electric vehicle

Operating Electric Vehicle Fleet for Ride-Hailing fleet, which provides ride-hailing services to local residents. The
. s . . goals oI operaung the electric venicle fleel are 10 minimize
Services With Reinforcement Lear ning customer waiting time, electricity cost, and operational costs of

the vehicles. A novel framework characterized by decentralized
learning and centralized decision making 1s proposed to solve the
electric vehicle fleet dispatch problem. The decentralized learning
process allows the individual vehicles to share their operating
experiences and deep neural network model for state-value
function estimation, which mitigates the curse of dimensionality
of state and action domains. The centralized decision making
framework converts the vehicle fleet coordination problem into a
linear assignment problem, which has polynomial time complex-
ity. Numerical study results show that the proposed approach
outperforms the benchmark algorithms in terms of societal cost
reduction.

Jie Shi*”, Student Member, IEEE, Yuangi Gao"™, Student Member, IEEE, Wei Wang™, Student Member, IEEE,
Nanpeng Yu™, Senior Member, IEEE. and Petros A. Ioannou, Fellow, IEEE



Opportunities for ML to measure and reduce transportation
emissions

Helping Reduce Environmental Impact of Aviation
with Machine Learning
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Commercial aviation is one of the biggest contributors towards climate change. We Wodsan { N Aircraft Sensing 4366 fhh AL
propose to reduce environmental impact of aviation by considering solutions that ” T e

Arcraft Observations.

would reduce the flight time. Specifically, we first consider improving winds aloft © C] ()
forecast so that flight planners could use better information to find routes that are

efficient. Secondly, we propose an aircraft routing method that seeks to find the

fastest route to the destination by considering uncertainty in the wind forecasts and

then optimally trading-off between exploration and exploitation. Both these ideas

were previously published in [5] and [8] and contain further technical details.



Opportunities for ML to measure and reduce transportation
emissions

How to optimize transport systems for cost and sustainability

£ Y
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Analyze Citizens' i = - Text Reviews on - e Autonomous and
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Simulation, Optimization, and Machine Learning in Sustainable
Transportation Systems: Models and Applications

by 3} Rocio de la Torre 1 8, ) canan G. Coriu2 29 @ Javier Faulin 3" &,
2} Bhakti S. Onggo 4 & @ and €3 Angel A. Juan 5 2 ©

l . \ \/,__ - / - - Abstract
AN\ N RN

fram— Logistic ‘ N \| e euristcs | '/Multi-Agem" fulti-variate! The need for effective freight and human transportation systems has consistently increased during the last decades,
\ Forests | Regression | Netorks /n | |

Traes | Systems | | Analysis ) mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally,

/ // transportation systems have been designed with the main goal of reducing their monetary cost while offering a

7 > specified quality of service. During the last decade, however, sustainability concepts are also being considered as a
critical component of transportation systems, i.e., the environmental and social impact of transportation activities

have to be taken into account when managers and policy makers design and operate modern transportation

systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work

on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS),

including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these

methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a

classification of common challenges, best practices, future trends, and open research lines that might be useful for
y both researchers and practitioners.
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Opportunities for ML to measure and reduce transportation

emissions
EV charging modeling

Machine Learning Approaches for EV Charging
Behavior: A Review

SAKIB SHAHRIAR !, A. R. AL-ALI"", (Life Senior Member, IEEE),
AHMED H. OSMAN 2, (Senior Member, IEEE), SALAM DHOU ', (Member, IEEE),
AND MAIS NIJIM3, (Member, IEEE)

! Department of Computer Science and Engineering. Amenican University of Sharjah. Sharjah. United Arab Emirates
2Department of Electrical Engincering, American University of Sharjah. Sharjah. United Arab Emirates
3Department of Electrical Engincering and Computer Science, Texas A&M University-Kingsville. Kingsville, TX 78363, USA

Corresponding author: A. R. Al-Ali (aali@aus.edu)

This work was supported in part by the Department of Computer Science and Engineering and the Open Access Program from the
American University of Sharjah. United Arab Emirates.

: ABSTRACT As the smart city applications are moving from conceptual models to development phase,
smart transportation is one of smart cities applications and it is gaining ground nowadays. Electric Vehicles
(EVs) are considered one of the major pillars of smart transportation applications. EVs are ever growing
in popularity due to their potential contribution in reducing dependency on fossil fuels and greenhouse gas
emissions. However, large-scale deployment of EV charging stations poses multiple challenges to the power
grid and public infrastructure. To overcome the issue of prolonged charging time, the simple solution of
deploying more charging stations to increase charging capacity does not work due to the strain on power
grids and physical space limitations. Therefore, researchers have focused on developing smart scheduling
algorithms to manage the demand for public charging using modeling and optimization. More recently, there
has been a growing interest in data-driven approaches in modeling EV charging. Consequently, researchers
are looking to identify consumer charging behavior pattern that can provide insights and predictive analytics
capability. The purpose of this article is to provide a comprehensive review for the use of supervised
and unsupervised Machine Learning as well as Deep Neural Networks for charging behavior analysis and
prediction. Recommendations and future research directions are also discussed.

https://ieeexplore.ieee.ora/abstract/document/9194702

TABLE 1. Supervised k for ch beh
Source Charging Behavior ML Model Results and Impacts
[49] Predict session duration and energy consumption SVR, RF and DKDE SMAPE charging duration: 10.4%, SMAPE ¢nergy
from both residential and idential bined to form an consumption: 7.54%. Reduced peak load by 27%. and
bled model. reduced charging cost by 4% when integrated to scheduler.
[55] Predict session duration and energy needs for Probabilistic GMM SMAPE user duration: 12.25%, SMAPE energy
i ial public charging space, CA, USA ion: 12.73%
[56] Predict EV charging departure time Regression including Best result using XGB: MAE of 82 minutes for departure
XGBoost and LR
[57] Predict start time, end time, energy consumption. LR for consumption -
[58] Predict arrival and departure time EVs in a SVMs Average MAPE arrival time: 2.85%, departure time: 3.7%.
[60] Predict whether the EVs will be charged the next Ensembled model TPR for predicting whether the EVs will be charged: 0.996,
day, and which hours they will be charged for using RF, Naive Accuracy for predicting the hours when the EVs will be
residential dataset. Bayes, AdaBoost and charged: 0.724
Gradient boostin
[61] Predict energy consumption at a charging outletina | KNN, Best model was SMAPE: 15.27%. The predictive model integrated to a
university campus (non-residential) with k set to 1 (1-NN) mobile application can predict the end charging time and
energy in 1 second
[62] Predict the energy needs at a charging outlet in the Various ML including Best result using PSF model with average SMAPE: 14.06%
next 24 hours for a university campus PSF, SVR, RF
[64] Predict energy consumption of a session PSF-based using KNN SMAPE: 7.85%
[65] Classify whether the driver will use fast chargin, Binary log. regression Accuracy: 0.894
[66] Predict the time to next plug for residential charging | SVR with radial basis MAE: 0.124 minutes, RMSE: 0.158 minutes
[67] Predict charge profiles in workplace XGBoost, LR and Best result using XGBoost MAE: 126 W.
ANN Addition to scheduling lead to up to 21% increase in charge.
[68] Develop model to predict charging speed using LR -
p ion time, SOC
[69] Predict charging capacity and daily charging times. RF MAPE: 9.76% | station. MAPE: 12.8% for groups of
stations for prediction of charging load for next 15 minutes




Opportunities for ML to measure and reduce transportation

emissions

Design of EV charging infrastructure

Optimal Placement of Public Electric Vehicle Charging Stations Using

Deep Reinforcement Learning

Aidan Petratos”

College of Natural Sciences,

The University of Texas at
Austin

Kristina Zhou

College of Natural Sciences,

The University of Texas at
Austin

Allen Ting

College of Natural Sciences,
The University of Texas at
Austin

Dylan Hageman
College of Natural Sciences,
The University of Texas at
Austin

Michael J. Pyrcz
Jackson School of
Geosciences, The University
of Texas at Austin

Shankar Padmanabhan

College of Natural Sciences,
The University of Texas at
Austin

Jesse R. Pisel
Paul M. Rady School of
Computer Science and
Engineering, The University
of Colorado at Boulder

Degrees Latitude

Albany County Charging Stations

en

Degrees Longitude

43200

737

®Ev
Charging
| Station



Opportunities for ML to measure and reduce transportation

emissions

Optimal ship design and usage

Machine learning in sustainable ship design
and operation: A review

Luofeng Huang* O, i, Blanca Pena?, Yuanchang Liu b Enrico Anderlini ®

Show more

Abstract

The shipping industry faces a large challenge as it needs to significantly lower the
amounts of Green House Gas emissions. Traditionally, reducing the fuel consumption for
ships has been achieved during the design stage and, after building a ship, through
optimisation of ship operations. In recent years, ship efficiency improvements using
Machine Learning (ML) methods are quickly progressing, facilitated by available data
from remote sensing, experiments and high-fidelity simulations. The data have been
successfully applied to extract intricate empirical rules that can reduce emissions
thereby helping achieve green shipping. This article presents an overview of applying ML
techniques to enhance ships’ sustainability. The work covers the ML fundamentals and
applications in relevant areas: ship design, operational performance, and voyage
planning. Suitable ML approaches are analysed and compared on a scenario basis, with
their space for improvements also discussed. Meanwhile, a reminder is given that ML has
many inherent uncertainties and hence should be used with caution.

https://www.sciencedirect.com/science/article/pii/S0029801822021904



Paper Deep Dive

Towards Indirect Top-Down Road Transport Emissions Estimation

Ryan Mukherjee Derek Rollend Gordon Christie Armin Hadzic
Sally Matson Anshu Saksena Marisa Hughes
Johns Hopkins University Applied Physics Laboratory

{firstname}.{lastname}@jhuapl.edu

Aim: predict the bottom-up calculated emissions value by using various indirect sources



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

If successful, how could this system be useful?



Motivation

Want to be able to apply the same
estimation method globally, even
where on-the-ground transportation
data doesn't exist.

Multiple efforts are developing detailed bottom-up on-
road emission inventories for the U.S. [!17, 22]. These
projects are limited from expanding globally due to the re-
liance on vehicle traffic and road data that is not readily
available on a global scale. EDGAR sought to improve on
the scope of emissions data by providing a global inven-
tory for transportation that uses road density as a proxy to
downscale emissions geographically [1!]. However, some
emission estimates for urban centers in EDGAR deviated
from other bottom-up inventories [ | 7] by 500%, indicating
that road density is not a sufficient proxy for global high-
resolution inventories.

Our work seeks to build upon these previous on-road
emissions inventory methods. Our approach, illustrated in
Figure 1, leverages deep learning methods for indirect esti-
mation of on-road emissions, at a global scale, with minimal
region-specific tuning effort. Our models leverage satellite
imagery as their primary input, enabling them to support
increased spatial resolution and temporal frequency of on-
road GHG estimates.



Motivation

Measuring emissions from cars
directly is hard, so try some
“indirect” methods

sions estimation. Vehicles are small, abundant, and fre-
quently on the move, which makes them especially chal-
lenging to directly observe. Direct measurement of road
transport emissions in a top-down manner would require
substantial infrastructure and technological development to
monitor and track all vehicles. For example, accomplish-
ing this with Earth observation satellites would require new
technological advancements addressing spatial resolution,
night-time capability, and scalability for continuous moni-
toring. Currently, many relevant Earth observation systems
are incapable of directly observing periods of peak vehicu-
lar activity (i.e., early morning or late afternoon commutes)
because they operate in sun-synchronous orbits, such as
NASA’s Afternoon Constellation [42]. Additionally, many
of these systems do not have sufficient spatial resolution to
resolve vehicles. PlanetScope imagery [25], at 3-5 m res-
olution, seems to be near the limit of what can be used for
monitoring vehicles [ 13, 7].



Data

Bottom-up inventories

3.1. Road Transport Emissions

Our models learn to regress road transportation CO»
emissions using supervised training with the Database of
Road Transportation Emissions (DARTE) [17]. DARTE
provides annual (1980-2017) bottom-up CO5 estimates at
a spatial resolution of 1 km? covering the conterminous
United States. DARTE leverages the Highway Performance
Monitoring System, which provides road segments with the
following properties: annual average daily traffic (AADT),
functional class, urban/rural context, and county. Road seg-

Database of Road Transportation Emissions (DARTE)
Metric Tons Carbon Dioxide Emitted in 2017

Tons CO, per km?
307,000

Estimated based on 5 vehicle types



Data

Satellite images

3.2. Visual Imagery

Visible-spectrum satellite imagery is the primary in-
put for our models. We use Sentinel-2 Level-2A prod-
ucts [14, 18] at 10 m x 10 m (100 m?) spatial resolu-
tion. Level-2A captures bottom-of-atmosphere reflectance
and incorporates radiometric calibration and orthorectifica-
tion corrections from previous product stages. Sentinel-2
collects 13 spectral bands with band centers ranging from
approximately 443 nm to 2190 nm. We only use bands 4,
3. and 2 from each Sentinel-2 image, which roughly corre-
spond to visible red. green, and blue channels, respectively.
These bands are stacked to form a single 3-channel RGB
image. which is also referred to as a true color composite.




Data

Road maps

3.3. Roads

Road network data is used as an input to our model for
three reasons: 1) it is used to generate bottom-up road trans-
port emissions estimates, 2) their presence should be cor-
related with road transport emissions, and 3) it should be
possible to obtain road network data globally either by us-
ing segmentation models applied to satellite data [+6] or by
sourcing it from governments or open-source databases like
OSM [25].

To incorporate road network data, we use Rasterio [ Y]
to create GeoTIFFs co-registered with our Sentinel-2
swaths. These GeoTIFFs use road network data extracted
from shapefiles provided by the Census TIGER system [ *-].




Data

CO2 estimates from remote or ground sensing

34.CO;

The benefits of using additional satellite and ground-
based measurements of CO> concentrations were also ex-
amined in this work. The Orbiting Carbon Observatory-2
(OCO-2) satellite from NASA measures column-averaged
CO2 dry air mole fraction (Xco,) in a sun-synchronous or-
bit with a 16 day revisit period [11]. To reduce the level

Ground-based CO; measurements were also explored
in order to determine whether measurements taken closer
to road-level offered any measurable improvement in
emissions estimation accuracy. NOAA's CarbonTracker
project [ #+] offers monthly-averaged CO2 mole fraction es-
timations at 1° x 1° spatial resolution over North America,
and at varying levels of the atmosphere [*0]. These concen-
trations are derived from their optimized surface flux prod-
uct that incorporates 460 observation datasets from across
the globe, recorded on the ground. in aircraft, and on-
board ships. Concentrations are available at 26 geopoten-




Data

Estimate population from satellite imagery

"

East View LandScan Global 2012 WebApp Acces!

3.5. Population Area Population:

614,094
3

Population is likely to be correlated with road transport
emissions, as vehicles are still primarily operated by peo-
ple and there were 1.88 vehicles per household as of 2001-
2007 [2]. As such, we investigated incorporating population
data into our model as an additional channel input. There

-

It is possible to achieve reasonable accuracy by estimat-
ing population from overhead imagery [2-]. For this effort,
we require annual (or sub-annual) gridded population esti-
mates that can be paired with Sentinel-2 and DARTE data.
LandScan estimates [+ 1] provided by Oak Ridge National
Laboratory meet this need. LandScan offers annual global
population distribution GeoTIFFs from 2000 through 2019.
For this effort, we use their 2017 product.




Data problem!

Different sources of data have different spatial and temporal resolution.

For example, satellite images here have 10m resolution, while emissions data is
reported a 1km resolution. Some data sources sample every 16 days, others
every month, etc.

Need to interpolate and/or average to get all data on same scale.



Data partitioned into training and test/validation sets

@ Train

Figure 3: Plot showing city locations sampled from the con-
terminous United States (CONUS) for training (blue) and

validation (orange).
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3.7. Architecture st o

The two base architectures we used in our experiments
were U-Net [40] and MA-Net [16]. U-Nets have been a
popular choice for the winning solutions of several pub-
lic challenges and datasets focused on per-pixel classifica-
tion and regression in both medical imaging (where they
were conceived) and satellite imagery [+, 40, 21]. Both
ResNet-34 [26] and EfficientNet-B3 [43] backbones were
tested. Given that DARTE data has a lower resolution than
Sentinel-2 imagery (1 km? vs 100 m?), we also decided to

32 64 128 256 128 64 32

modify the standard U-Net to perform reduced upsampling [0 Res-Block @ % [ vp-Sampling (] P [ w3 — > Skip Comection
within the network. Given that inputs to the network had a FIGURE 1. The total architecture of MA-Net
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Evaluation

DARTE Distributions 2017

. . 0.45
root mean square logarithmic error (RMSLE)
RMSLE is com;nonly used for reg;ession tasks where 035
the underlying ground truth data distribution is exponential 9 50
or has many outliers, expressed as follows: %’_
2025
1 n E 0.20
RMSLE = $ - ;(log(Pi +1) — log(GT; +1))2. (1) §0 -
010
0.05
mean absolute percentage error (MAPE)
’ 0 25000 50000 75000 100000 125000 150000 175000 200000
CO; Concentration (kg CO,/km?)
100 QT4 1) — (PiiT Figure 2: Histogram of DARTE road transport CO5 emis-
MAPE = — Z (GT: +1) — (B + )l 2) sions estimates for 2017
n s GT; +1

Tested several versions of the model trained with different combinations of data
sources



Results



Results

Method RMSLE MAE MAPE
RN-34 U-Net 0.661 38.9 50%
EN-B3 U-Net 0.710 1.2 47 %
EN-B3 Reduced U-Net  0.836  2669.0 214%
EN-B3 MA-Net 0.616 39.5 55%

Table 1: Comparison of results across varying neural net-
work architectures trained on Sentinel-2 and road network
data, including ResNet-34 (RN-34) and EfficientNet-B3
(EN-B3) backbone U-Nets, a Reduced U-Net architecture,
and an MA-Net architecture. MAE is in units of kg CO,
per 100 m?.

No strong winner amongst the different architectures



Results

Method RMSLE MAE MAPE
S2 1.030 359 65%
R 0.730 43.3 64%
S2+R 0.616 39.5 55%
S2+0CO02 1.050 3.1 88%
S2+R+LS 0.739 49.9 47%
S2+R+0CO2 0.709 49.3 46 %
S2+R+0CO2+CT  0.817 52.6 46 %

Table 2: Comparison of MA-Net results for models trained
with varying inputs, including Sentinel-2 visual imagery
(S2), road imagery (R), LandScan (LS) population esti-
mates, Orbiting Carbon Observatory-2 (OCO2) Level 3
data, and CarbonTracker data (CT). MAE is in units of kg

CO, per 100 m?.

DARTE Ground Truth

S2 + 0CO2
MAE: 311.561

2000
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1000

500

S2
MAE: 312.008

S2 +R + LS
MAE: 253.414

R
MAE: 226.710

S2 + R + 0CO2
MAE: 266.012

S2 +R
MAE: 190.016

S2 + R+ 0CO2 + CT
MAE: 280.997

Satellite image and road maps alone get best
absolute error. Need carbon info for lower relative
error.

1250

1000



Results

Mismatched resolution makes evaluation
hard!!

“By calculating error in a pixel-wise fashion, the model is penalized for
learning fine-grained structure. In other words, if the model cor-

rectly estimates low emissions from nearby farmland, it will

be penalized due to the fact that our ground truth contains

large emissions values in that area.”

DARTE Ground Truth

52 + 0C02
MAE: 311.561

2000

1500

1000

500

MAE: 312.008

S2+R+ LS
MAE: 253.414

R
MAE: 226.710

S2 + R + 0CO2
MAE: 266.012

S2 +R
MAE: 190.016

S2 + R+ 0CO2 + CT
MAE: 280.997
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1000

750

500
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Conclusions

Significant challenges remain to operationalize this tech-
nology. Model accuracy must be improved and estima-
tion uncertainty quantified to provide actionable informa-
tion for regional governments and municipalities. The lim-
ited availability of accurate and global road transportation
emissions data must be overcome, including concerns of
model transfer and regional bias. It remains to be seen if
changes in government policy and human behavior over an-
nual timescales will be captured by our models, although
this hypothesis will be testable as data from 2020 emerges.
Despite these challenges, we believe this work represents
a critical step towards building scalable, global, near-real-
time road transportation emissions inventories that can pro-
vide independent and objective feedback as the global com-
munity tackles climate change.



Further Resources

The geography of metropolitan carbon footprints:
https://academic.oup.com/policyandsociety/article/27/4/285/6420857

IPCC recommendations for the transport sector (section 11):
https://www.carbonbrief.org/in-depth-ga-the-ipccs-sixth-assessment-on-how-to-tac
kle-climate-change/

Electric vehicle factbook:
https://assets.bbhub.io/professional/sites/24/2022-COP27-ZEV-Transition Factbo

ok.pdf



https://academic.oup.com/policyandsociety/article/27/4/285/6420857
https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/
https://www.carbonbrief.org/in-depth-qa-the-ipccs-sixth-assessment-on-how-to-tackle-climate-change/
https://assets.bbhub.io/professional/sites/24/2022-COP27-ZEV-Transition_Factbook.pdf
https://assets.bbhub.io/professional/sites/24/2022-COP27-ZEV-Transition_Factbook.pdf

Summary

Where do transport emissions come from?

8
Indirect Emissions
¥ from Electriity
Generation
6
£
g,
8
s
£,
g
5
=]
s
3
2 Rail
Pipelineetc.
1 Domestic Aviation
Internation
Shipping
0 Domestic Waterbome
1970 175 1980 1985 1990 1995 2000 2005 2000
Source: IPCC WORLD RESOURCES INSTITUTE

-Based Vehicle Emissions

Regulatory Focus

|
e

Material, Powertrain
& Components

Py

Raw Material Extraction

o

o 00 o

Vehicle Manufacture

J

A d

Fuel Cycle

Fuel/Energy Use
(Tailpipe Emissions)

Current Vehicle Emissions
Regulatory Focus

Manufacture
Global passenger vehicle sales by drivetrain
2020 2021 1H 2022
EV,4.3% EV,8.7% EV,13.2%
73 million 75 million 32 million
ICE, 95.7% ICE, 91.3% ICE, 86.8%

Source: BloombergNEF. Note: ICE = internal combustion engine.

10  Zero-Emission Vehicles Factbook, November 2022
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