Disaster Response

Responding to extreme weather events



Assignments

Keep working on your projects!

Discussion question:

“What do you think of NYU's 2040now campaign?”
https://www.nyu.edu/about/university-initiatives/2040-now.html

Due Friday by midnight


https://www.nyu.edu/about/university-initiatives/2040-now.html

Climate change in the news




Climate change in the news

UN seeks court opinion on climate in win for island states

By ISABELLA O'MALLEY and DANA BELTAJI March 29, 2023

The countries of the United Nations led by the island state of Vanuatu adopted what they called a
historic resolution Wednesday calling for the U.N.‘s highest court to strengthen countries’

obligations to curb warming and protect communities from climate disaster.

Like many Pacific Island nations Vanuatu is at risk of rising seas engulfing swathes of the islands.
Scientists say both extreme weather and sea levels have worsened because of climate change
caused by the burning of fossil fuels. The resolution asks the court to pay particular attention to

the harm endured by small island states.

Saudi Arabia and Iraq sought to soften the resolution, which was co-sponsored by some 132

countries, saying it would increase the workload of the international court.

While the opinion from the International court of justice would not be binding, it would
encourage states “to actually go back and look at what they haven’t been doing and what they

need to do” to address the climate emergency, said Nilufer Oral, director at the Center for

International Law at the University of Singapore.
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Mitigation versus Adaptation
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Extreme weather events

Climate change has already caused
-more heat waves

-changes in rainfall
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Extreme weather events

Climate change has already caused

IPCC

-more heat waves
-changes in rainfall

-increased floods in some regions

FAQ 8.2: Causes of more severe floods from climate change

Flooding presents a hazard but the link between rainfall and flooding is not simple.
While the largest flooding events can be expected to worsen, flood occurrence may decrease in some regions.
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Extreme weather events

Climate change has already caused
-more heat waves
-changes in rainfall

-increased floods in some regions
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Extreme weather events

Climate change has already caused
-more heat waves
-changes in rainfall

-increased floods in some regions
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Extreme weather events

Climate change has already caused
-more heat waves
-changes in rainfall
-increased floods in some regions
-increased drought

-changes in tropical storms
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Disaster Response and Recovery

Response: the use of resources (including personnel, supplies and equipment) to
help restore personal and environmental safety, as well as to minimize the risk of any
additional property damage after the disaster

Recovery: involves stabilizing the area and restoring all essential community
functions. Recovery requires prioritization: first, essential services like food, clean
water, utilities, transportation and healthcare will be restored, with less-essential
services being prioritized later. This can take years or decades

https://www.ucf.edu/online/leadership-management/news/the-disaster-management-cycle/



https://www.ucf.edu/online/leadership-management/news/the-disaster-management-cycle/

Disaster Response and Recovery

Governments and non-profits are primarily responsible for disaster response.

2 Services News Government

Division of Homeland Security and Emergency Services

Emergency Management State Fire

Office of Emergency
Management

+ American
LV Red Cross

https://www.ucf.edu/online/leadership-management/news/the-disaster-management-cycle/
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Costs of disaster response

U.S. 2022 Billion-Dollar Weather and Climate Disasters
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Disaster Response

Wildfire response



http://www.youtube.com/watch?v=sRibOv1FQsU

Paper Deep Dive

Unsupervised Wildfire Change Detection based on
Contrastive Learning

Beichen Zhang', Huiqi Wang”, Amani Alabri®, Karol Bot*,
Cole McCall®, Dale Hamilton®; Vit Ruzicka®
!University of Nebraska-Lincoln, ?University of California, Berkeley,”Boston University,
1Lisbon University, Northwest Nazarene University, ®*University of Oxford

https://arxiv.orq/pdf/2211.14654.pdf



https://arxiv.org/pdf/2211.14654.pdf

Background

|[dentifying where wildfires have occurred is important for

e assessing damage and planning evacuation
e responding to problems and planning ecological restoration
e predicting future wildfire events



The goal
Build a system that can detect where wildfires have occurred using satellite
imagery without previous examples

e may not have previous examples in many locations
e features of wildfires may differ across locations



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

What difficulties might you face?



The data

Two image sources:

Sentinel-2 satellite imagery (10m resolution, 5 day revisit time, 13-->4 spectral
bands)

PlanetScope satellite imagery (3.7m resolution, daily revisit, 4 spectral bands)



The data

3 different study areas in Western United States:

Table 1: Description of Wildfires used in this Research.

Area of Interest  Fire Start Date  Containment Date Time of Interest Size (Hectares)
Mesa Fire 7/26/2018 9/25/2018 7/1/2018 to 10/1/2018 14.050
East Troublesome 10/14/2020 11/30/2020 10/1/2020 to 12/1/2020 78.432
McFarland Fire 7/29/2021 9/16/2021 7/1/2021 to 10/1/2021 49.635

As long as the imagery covered enough of the study area (>50%) and did not
have significant cloud cover, each PlanetScope and Sentinel-2 image was added

to the dataset and could be considered either pre-fire, active fire, or post-fire
imagery.



The data (preprocessing)

Clouds are a problem in
satellite imagery.




The data (preprocessing)

“The data is normalised using the statistics from the training set,

parameters are saved and later reused for the rest of the data”

def

__data_generation(self, list_IDs_temp):

'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization

X = np.zeros((self.batch_size,)+self.imsize)

y = np.zeros((self.batch_size), dtype=int)

noise = np.random.randn(X.shape[0],X.shape[1],X.shape[2],X.shape[3])*self.noise_std
noise[np.random.choice(self.batch_size,size=(int(self.batch_size*.45)),replace=False),:,:,:] = 0

#training set mean and std

# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample

im = np.load(self.im_path + 'im' + "%05d" % ID + ' +str(self 1abels[ID]) + '.npy')

X[1,] = im[:self.imsize[0],:self.imsize[1],:self. tmstze[ 11/25 #basic crop because some have extra pixels
X[i,:,:,0] = (X[1,:,:,0]-r[0])/r[1]

X[i,:,:,1] = (X[1,:,:,1]-g[0])/9[1]

X[i,:,:,2] = (X[1,:,:,2]-b[0])/b[1]

X[,:,:,3] = (X[1,:,:,3]-tr[0])/ir[1]

# Store class
y[1] = self.label_convert(self.labels[ID])

X += noise
return X, y

these



The method

“Change detection is defined as identifying differences in a site’s state or
phenomenon by observing it at different times.”

1870 1890 1910 1930 1950 1970



The method

“Change detection is defined as identifying differences in a site’s state or
phenomenon by observing it at different times.”

“In this context, our work aims to employ unsupervised machine learning methods
associated with multispectral satellite images to assess the change detection of
burned areas”



The method

“SimCLR”

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

https://arxiv.org/pdf/2002.05709.pdf
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Contrastive Learning
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The goal of contrastive learning is to build a model that will represent similar
images similarly, and dissimilar images dissimilarly. It does this through
“self-supervised” learning with augmented images

https://blog.salesforceairesearch.com/prototypical-contrastive-learning-pushing-the-frontiers-of-unsupervised-learning/



https://blog.salesforceairesearch.com/prototypical-contrastive-learning-pushing-the-frontiers-of-unsupervised-learning/

The method

32x32x4 256x1 128x1

Augmentation 1

Loss
function

Augmentation 2

“FireCLR” based on SimCLR. Training: “Data augmentation for image tiles
includes: random crop, gaussian blur, random flip and fixed rotation. Importantly,
we excluded any augmentation process which would change the color of the
images since the changes caused by fires are sensitive to the reflectance.”



The method

32x32x4 256x1
Pre-fire 1 X [ hi T~
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“FireCLR” based on SIimCLR. To detect changes, the hidden layer representations
are compared for two images via cosine distance. This is used to identify if a
change due to wildfire has occurred.



The method
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“FireCLR” based on SImCLR. To access fire severity, the change in hidden layer
representations are entered into a clustering algorithm, and clusters are then
related to different levels of burn severity.



The method

Two models trained in order to test two different approaches:

Local model: Trained on same geographical location tested on. Uses Sentinel-2
data

Global model: Trained on other two locations and tested on remaining one. Uses
PlanetScope data.



Evaluation



Evaluation

auPRC (precision recall curve)
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Evaluation
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> Evaluation on fire severity: per class F1 score




Evaluation

Comparison to (untrained) baseline methods for change detection:

Change in Normalized Difference Vegetation Index (NDVI) - based on red and
near infrared channels available in PlanetScope data

Change in Normalized Burn Ratio (NBR) - based on near infrared and
shortwave infrared which is only available in Sentinel-2



Evaluation

Comparison to (untrained) baseline methods for burn severity:

Change in Normalized Burn Ratio (NBR) + clustering

Principal Components Analysis (PCA) on remote sensing data + clustering



Summary of methods
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Results



Results

Change detection with Sentinel-2 data
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Results

Change detection with PlanetScope data
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Results

Fire severity

Table 2: Fl-scores of the models trained in local mode (the same location for the training and
evaluation set, using different times) with Sentinel-2 data on the downstream task of unsupervised
cluster classification.

Method Bands Effective res. White Ash Black Ash  Unburned
PCA + K-means S2 RGB+NIR 10m 0.59 0.86 0.6
dNBR + K-means S2 RGB+SWIR 10m 0.93 0.78 0.76
FireCLR + K-means S2 RGB+NIR 80m 0.51 0.82 0.79

Table 3: Fl-scores of the models trained in global mode (different location and timeframes for the
training and evaluation sets) with PlanetScope data on the downstream task of unsupervised cluster
classification.

Method Bands Effective res. White Ash Black Ash  Unburned

PCA + K-means PS RGB+NIR 3m 0.9 0.86 0.76
FireCLR + K-means PS RGB+NIR 24m 0.9 0.86 0.78

Manual
Annotations

PS: 3-cluster K-means on
FireCLR representations

$2: 3-cluster K-means on
FireCLR representations




Conclusions

“In conclusion, the proposed FireCLR model outperforms the baseline methods in
both Sentinel-2 and PlanetScope datasets based on the AUPRC score, and
shows mixed, but comparable results on downstream validation tasks.

We note that this work should serve as an initial exploration of this approach. In
future research, we would like to run more experiments to closely compare the
performance of using sensor data of different resolutions”



Further resources

Artificial Intelligence for Humanitarian Assistance and Disaster Response
Workshop

https://www.hadr.ai/



https://www.hadr.ai/
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