Food Security

Automated Farming



Assignments

Keep working on your projects!

Discussion question: What is the most challenging aspect of your project right
now?

Due Friday 5pm



Climate change in the news




The vehicles purchased are Ford E-Transit Battery
Electric Vehicles (BEVs), which according to USPS are
C|imate Chanqe in the news "100 percent electric.” It's part of the agency's plans,
~ announced in December, to make 75% of its newly
acquired vehicles, known as Next Generation Delivery
Vehicles, over the next five years electric. After 2026,
NGDV purchases will be 100% electric, the agency

U.S. Postal Service starts nationwide electric

vehicle fleet, buying 9,250 EVs and thousands said.
of charging stations

Three suppliers were awarded contracts for more than
14,000 charging stations, as well, USPS said, to kick
off its Electric Vehicle Supply Equipment (EVSE)
inventory.

A contract has also been awarded for the agency to
acquire 9,250 commercial-off-the-shelf internal
combustion engine vehicles "to fill the urgent need for
vehicles."

The postal service's drive toward clean energy vehicles is
only a recent development that came after it received
significant backlash over plans to replace its fleet with 90%
gas-powered vehicles.



https://www.cbsnews.com/news/us-postal-service-gas-trucks-electric-biden-epa/
https://www.cbsnews.com/news/us-postal-service-gas-trucks-electric-biden-epa/
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F:gure ES- 4 Chmate-change effects on agncultural commodllles in 2050 under different SSPs and RCPs. The more

istic “high conc Tow i ional cooperation” scenario (RCP8.5/SS5P3) shows much larger and more
Vanable climate-change effects for the five commodities (coarse grains, rice, wheat ullseeds and sugar), than the “me-
dium concentration/middle of the road” (RCP6.0/SSP2) and “low conc I " (RCP4.5/SSP1)
scenarios. All are compared to baseline of SSPs with no climate change. Results are from three GCMs and five economic
models, aggregated across thirteen regions (n = 75). YEXO = yield effect of climate change without technical or economic
adaptation, YTOT = realized yields after adaptation, AREA = agricultural area in production, PROD = total production, CONS
= consumption, Expo = exports, IMPO = imports, PRICE = prices.
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National Farm Safety and
Farm labor Health Week scptember 18-24, 2022

o Overturning tractors and
I o p 5 heavy machinery

@ rais

Farm labor can be dangerous and is made rna.lzrr‘i‘égdated @ [oc chemical exposure
. . O pesticiaes
more dangerous by increasing temperatures J

$8.3 Billion Gnag

Annual costs of occupational injuries ¢ daily suffer a lost-work-time injury”
in agriculture**

O - - |
famworkers who died M 70’000 Il ;

% more likely

lnir?j:m—(ze(!)?: 2 suffered heat-related to die of
injuries during heat-related
last 25 years® illness*

EFI provides training and a place for workers to have a voice
in the farming ion. Work ive teams

play a vital role in creating safer and healthier workplaces.
Learn more at equitablefood.org. L

Sources: *National Institute or Occupationst Safaty and Healtn (MIOSH); “"OSHA




Some farm tasks can be automated



http://www.youtube.com/watch?v=ALmqer120qM&t=10

But some tasks are too delicate to automate

FLYING

PICKER



http://www.youtube.com/watch?v=6olybtRPdwg

Changing climate will harm outdoor crops

HOW DOES CLIMATE CHANGE IMPACT
AGRICULTURE? ]

Climate change causes erratic il | |
weather patterns, extreme | L L
temperatures and changes in \ A
natural resources, threatening \\
farmers’ ability to sustainably LOSS OF

4 produce and maintain NATURAL
quality crops. RESOURCES
- - Removes habitats

‘ ‘ ‘ and food for beneficial insects

4 Dries up water sources

¢

EXCESSIVE
PRECIPITATION
Increases dificulty
of planting
Raises flood risk

o  Damagescrops

FLOODING

Removes topsoil

Drowns crops




Vertical Farms and Precision Agriculture

Indoor farms allow for climate and
pest control

Precision agriculture uses
fine-grained data to tailor climate
etc to plant needs
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Background and Motivation

“The traditional agricultural production mode is highly dependent on the weather,
which has been unable to meet the increasing demand for fresh and healthy food
from global population growth. ”

“Modern high-tech greenhouses are equipped with standard sensors and
actuators (such as heating, lighting, CO2 dosing, irrigation, etc.) to empower
precision agriculture. To improve crop yield and quality, managers regularly
regulate a suitable environment for crop growth by overseeing the greenhouse
climate and crop growth state.”



Background and Motivation

“Skilled managers capable of autonomous greenhouse control are scarce.
Furthermore, even a seasoned manager is not able to monitor and manage too
many greenhouses simultaneously.”

“The grower needs to balance production and resource consumption during a 3-5
months period, which implies a tremendous decision-making space. The
complexity of decision-making has led to growers only giving coarse-grained
control strategies, which do not make full use of the rich greenhouse states
information.”



Background and Motivation

“Skilled managers capable of autonomous greenhouse control are scarce.
Furthermore, even a seasoned manager is not able to monitor and manage too
many greenhouses simultaneously.”

“The grower needs to balance production and resource consumption during a 3-5
months period, which implies a tremendous decision-making space. The
complexity of decision-making has led to growers only giving coarse-grained
control strategies, which do not make full use of the rich greenhouse states
information.”

Goal: automate the decision making process for greenhouse control



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

What difficulties might you face?



Data

Temperature, humidity, CO2, and “photosynthetically active radiation” measured
from a greenhouse with a ventilation controller, CO2 producer, Fertigation
(irrigation) controller.

Goal: grow the most tomatoes for the least cost

Figure 2: Equipments in our greenhouse. (a)temperature sensor. (b)CO2 sensor. (¢)PAR
sensor. (d)ventilation controller. (e)COs producer. (f)fertigation controller.



Framing the problem



Framing the problem

When using reinforcement learning to solve a control problem, the aim is to
develop a policy that controls an agent to maximize reward.

The policy is a function that takes in a state observation and produces an action.

{~ N\

AGENT
Observation Action

Policy

1

Reinforcement
Learning
Algorithm

Reward

ENVIRONMENT

https://www.mathworks.com/company/newsletters/articles/reinforcement-learning-a-brief-guide.htmi



https://www.mathworks.com/company/newsletters/articles/reinforcement-learning-a-brief-guide.html

Framing the problem

When using reinforcement learning to solve a control problem, the aim is to
develop a policy that controls an agent to maximize reward.

The policy is a function that takes in a state observation and produces an action.

Action

Observation

IRONMENT

https://www.mathworks.com/company/newsletters/articles/reinforcement-learning-a-brief-guide.htmi



https://www.mathworks.com/company/newsletters/articles/reinforcement-learning-a-brief-guide.html

RL example

Agent = person

State = coordinates, walls, reward
Reward = star

Actions = up,down,left,right

Policy = what action to take when in a certain state
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Reinforcement learning is hard because of...
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Reinforcement learning is hard because of...

Sparse feedback

Long-term dependencies

Complex observations

Complex action spaces

Uncertainty in the world
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Data needs




RL concepts

Markov Decision Process (describes the situation in which RL can take place)

If in a state S_x, each action will lead
to State_y, with some probability




RL Concepts

Value functions
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http://www.youtube.com/watch?v=eMxOGwbdqKY&t=167

RL concepts

Value functions

Policies can be defined as
taking the action with the
highest value
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RL concepts

Model-free vs Model-based Agents

Model-based vs. Model-free
Reinforcement Learning

model Model planning
building
model-based approach

Experience ‘ Value function }—»} Policy

model-free approach

V7 Labs



RL concepts

Learning algorithms: trying to find the best value function/policy

RL Algorithms

. : 3

Model-Free Action-Value Gradient Bandit
(DP, etc) (TD, MC, ete) Methods Methods

Given the Model
MCTS (AlphaGo / Value-Based Policy-Based
AlphaZero)

[On-l’ollcy] [Oﬁ-l’ollcy] l Gradient-Based l

Model-Based

Learn the Model

¥
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Monte Carlo methods

Model-free Monte Carlo

Monte-Carlo
V(S:) + V(St) + a(G — V(S))

Try random moves and see how
much reward it gets you in the end.

Value function of a state is the
average reward received after
passing through that state.



Monte Carlo methods

Model-free Monte Carlo

Monte-Carlo
V(S:) + V(St) + a(G — V(S))

Try random moves and see how
much reward it gets you in the end.

Value function of a state is the
average reward received after
passing through that state.

Important concept: Discounted Reward

Let V7P (s) denotes the expected return or expectation of cumulative rewards starting
from initial state s, i.e., the expected sum of discounted rewards following policy 7s(als)
and state transition function P(s,a):
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Monte Carlo methods

Model-based Monte Carlo

Monte-Carlo
V(S:) < V(St) + a (G — V(S:))
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Simulate with a model

Models can be used to speed up a
tree search.



Table 1: Observation Space (Above) and Action Sapce (Below)

Name Min Max Dim
F ra m i n g th e p ro b I e m temperature setpoint 13 32 24
CO3 setpoint 400 1000 24
light-on time 0 24 1
light-off time 0 24 1
« . . irrigation start time 0 24 1
We collect 22 kinds of observation irrigation stop time 0 2 1
outside solar radiation 0 2000 24
va rl a b | es ) con Stltutl N g a outsid.c tcmpe}‘a.tnre -30 50 24
outside humidity 0 100 24

275-dimensional observation space gt i 5 im b

virtual sky temperature

. . greenhouse air temperature -30 100 24

S’ and 6 kl nds Of Contr0| va rlables! greenhouse air humidity 0 100 24
. . . . . greenhouse air CO3 concentration 400 1000 24
constituting a 52-dimensional action Hght intensity just above crop 0 2000 24
” cumulative amount of irrigation per day 0 10 1
Space cumulative amount of drain per day 0 10 1
leaf area index 0 10 1

current number of growing fruits 0 1000 1

cumulative harvest in terms of fruit fresh weight 0 100 1

cumulative harvest in terms of fruit dry weight 0 100 1

planting days 0 365 1

temperature setpoint 13 32 24

CO3 setpoint 400 1000 24

light on time 0 24 1

light off time 0 24 1

irrigation start time 0 24 1

irrigation stop time 0 24 1




Framing the problem

We use the Netprofit (USD/m2) as the target reward for training.

Netprofit = Gains — Costs,

where Gains are obtained through yields and price, and Costs include resource
consumption (electricity, heat, CO2, and water) and crop maintenance costs.



Training problem

RL agents can make a lot of mistakes while learning and need many iterations


http://www.youtube.com/watch?v=hx_bgoTF7bs&t=87

Training problem

To solve the lack of data, train a “greenhouse simulator” based on existing
greenhouse data.
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Training problem

To solve the lack of data, train a “greenhouse simulator” based on existing
greenhouse data.

To correct for the fact that the simulator won'’t be perfectly accurate, use an

ensemble
model. We learn a collection of fine-tuned simulator models M = {My,, M,,.... My, }.
We use parametric notation M. ¢ € @ to specifically denote the model trained by neural
network, where ® is the parameter space of models. Each member of the collection M is a
probabilistic neural network whose outputs p4,, 04, parametrize a Guassian distribution:

§' = My, (5.0) ~ N (g, (s, a), 75,(s,)) (4)



Training problem

To solve the lack of data, train a “greenhouse simulator” based on existing
greenhouse data.

To correct for the fact that the simulator won'’t be perfectly accurate, use an

ensemble
model. We learn a collection of fine-tuned simulator models M = {My,, M,,.... My, }.
We use parametric notation M. ¢ € ® to specifically denote the model trained by neural
network, where ® is the parameter space of models. Each member of the collection M is a
probabilistic neural network whose outputs p4,, 04, parametrize a Guassian distribution:

s’ = My, (s,a) ~ N(pg,(s,a),04,(s,a)) (4)

“Individual probabilistic models capture aleatoric uncertainty
or the noise due to the inherent stochasticity. The bootstrapping ensemble procedure can
capture epistemic uncertainty or uncertainty in the model parameters aroused from insuf-
ficient training data.”



Training problem #2

Especially when applying to real world environments, want to not just have large
average reward, but also avoid the possibility of catastrophic outcomes



Training problem #2

Especially when applying to real world environments, want to not just have large
average reward, but also avoid the possibility of catastrophic outcomes
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Inspired by previous works Tamar et al. (2015); Rajeswaran et al. (2016) which optimize
conditional value at risk (CVaR) to explicitly seek a robust policy, we add a sample dropout <——
module to the RL algorithm, which selectively discards a portion of samples with excessive
reward, to focus more on worst-case samples, improving the adaptability of the planting
policy in extreme situations, and solve the safety challenges of RL in real-world deployment,
aiming to further enhance the safety of the automated planting policy.



Evaluation

Would take too long to test it out on real greenhouse, so use a hand-built
computationally expensive greenhouse simulator.

Evaluate on expected return and net profits

Compare to model-free method, learned directly from observed state-action pairs




Results

We train two versions of our method on the greenhouse simulator, one with
sample dropout (p = 0.8) and one without sample dropout (p = 1) and compare
to a model-free method.



Results

We train two versions of our method on the greenhouse simulator, one with
sample dropout (p = 0.8) and one without sample dropout (p = 1) and compare
to a model-free method.
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“As for the SAC algorithm, it performs worse than our algorithm, which
is caused by the low sample efficiency of the model-free method, making it difficult to
learn enough information with limited samples.”



Results

Sample dropout makes the model more robust to a wider range of conditions

with dropout

without dropout
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Results

Too much dropout is bad

o |
[ o===

[
o

=X
& = -
) - b ‘.
= %
] -
=
4 4
] M : : : ; p 2 ; . :
0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
p p

The effect of adjusting parameter p: The left box plot shows the Netprofit that
the algorithms can achieve with different parameters in the standard environment;
The right box plot shows the average values of Netprofit that the algorithm can
achieve with different parameters in the four disturbed environments (Tempera-



Further resources

More on robot farm equipment: https://youtu.be/bpaliiJmR3Q

https://deeplizard.com/learn/video/nyjbcRQ-uQ8 Online lessons on reinforcement
learning



https://youtu.be/bpa1iiJmR3Q
https://deeplizard.com/learn/video/nyjbcRQ-uQ8

Summary
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Health Week september 18-24, 2022
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