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Assignments

Brightspace discussion question:

“What do you think of our paper deep dives so far? Anything you like about them or would like to
be different? (Be honest!)”

Due this Friday by 5pm.

Third programming assignment on identifying crops in remote sensing data (with grading rubric)

Due Friday the 3rd by midnight.

Midterm - March 9th (review on Mar 2)



Climate change in the news




Climate change in the news

A suburb in Arizona lost its source of water.
Residents warn: We're only the beginning
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The mega-drought is pitting neighbour against neighbour, and the repercussions are
international

& Alexander Panetta - CBC News - Posted: Feb 21, 2023 4:00 AM EST | Last Updated: February 21

John Hornewer pumps water from his truck into a residential tank in Rio Verde Foothills, Ariz. As the drought
makes water more scarce, he's had to go farther to find it — and charge a lot more. (Jason Burles/CBC)

A man in Arizona sees a glimpse of a potentially frightening future. A future where the planet is
hotter, the soil is drier, and our most precious resource is evaporating.

His job is delivering water. And his job is getting harder.

John Hornewer is now having to drive hours farther each day to fill his truck, which, in turn, fills
the subterranean tanks at homes in an area outside Phoenix.

'One neighbour started peeing outside’

Ingenious and borderline-desperate water-saving tactics are being deployed.

People are now showering at nearby gyms. Some eat on paper plates. They collect rainwater in
outdoor buckets and use them to flush toilets.

They flush toilets less often and promote their water-saving ways with not-entirely-tongue-in-
cheek slogans like: Don't blush, share a flush.

"One neighbour started peeing outside," said one resident, Linda Vincent. "We haven't gotten to
that point yet."

This county, Maricopa, is a fast-growing area in a fast-growing state.

Feuds over water: 'It's getting mean'

The competition over water allocation is pitting state versus state — Arizona versus California,
primarily, have clashing views on what would be a fair allocation.

Even within states, it's pitting city-dwellers against farmers, and neighbour versus neighbour.
"It's getting mean," said local horse-breeder Mike Miola.

"People are angry."

The brutal math of the Colorado River

When a treaty now involving seven states and Mexico was designed in 1922, it had been an
abnormally rainy few years. The river was never going to provide the expected volumes, the 16.5
million acre-feet (about 20 billion cubic metres) allocated per year.

Then came the population explosion. Metropolises like Las Vegas, Los Angeles, San Diego and
Phoenix sprouted in what was originally a farming region, blowing past the 16.5-million-acre-foot
target.
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Retail: 0.7 billion tonnes
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Transport: 0.8 billion tonnes 3.1 billion tCO,e
Food processing: 0.6 billion tonnes

Agricultural production g
7.1 billion tonnes CO,e iculture, aq

capture fisherie

Crippa et al. (2021) estimate higher
land use emissions since it allocates
Land use all deforestation to agriculture
5.7 billion tonnes CO,e

Poore and Nemecek (2018) assign
only 60% of deforestation to
agriculture for food.

Crippa et al. (2021)
17.9 billion tonnes CO, e from food*
That's 34% of global GHG emissions

("some non-food agricultural products included)
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Figure 8. Impact of temperature on the appearance of ‘Killarney’ red raspberries during a storage period of 7 days [4,6]. (Online
version in colour.)
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The need to produce more energy from clean sources

Primary energy consumption by fuel, Net Zero Scenario

100k




The need to produce more energy from clean sources

Global Al in Energy Market to &%
Reach $7.78 Billion by 2024 BIS Doceardh

Emerging Technology Market Intelligence

NEWS PROVIDED BY SHARE THIS ARTICLE

s 000000
Jan 09, 2020, 08:30 ET

FREMONT, California, Jan. 9, 2020 /PRNewswire/ -- According to a new market intelligence report by BIS Research titled
'Global Artificial Intelligence (Al) in Energy Market - Analysis and Forecast, 2019-2024', the artificial intelligence in
energy market is expected to reach $7.78 billion by 2024. The market is projected to witness a CAGR of 22.49% from
2019 to 2024. This growth is anticipated to be driven by the demand for increasing operational efficiency, rising concern
for energy efficiency, growing market penetration of decentralized power generation, and rising concern for battery

storage systems.



Wind turbines

Convert kinetic energy of air into electric
power using a generator.

How Does Wind Energy Work?

Wind blows past The kinetic energy <!

turbines, rotating is transformed into O -

their blades. mechanical energy. '/ ~
\

Electricity can then be
stored or transported to
grid for distribution.

Transformer
converts
electricity to
appropriate
voltage.

A gearbox spins
a generator to
produce electricity.

° Sinusoidal
voltage output

A voltage proportional to
the rate of change of the
area facing the magnetic
field is generated in the
coil. This is an example
of Faraday's law.

The mechanical energy input to
a generator turns the coil in the
magnetic field.

http://hyperphysics.phy-astr.gsu.edu



Wind turbines

Convert kinetic energy of air into electric
power using a generator.

Can be horizontal or vertical.

Horizontal are more common and can produce
more energy, but come with high costs of
sound pollution, space needs, wildlife
interference, and failure due to environmental
damage.

HORIZONTAL AXIS

VERTICAL AXIS



Wind turbines

Focused on maintenance: monitor functions and detect scenarios that might
trigger maintenance, e.g., detect significant deviations from normal operation in
the turbine.

Article
Machine Learning for Wind Turbine Blades
Maintenance Management
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Abstract: Delamination in Wind Turbine Blades (WTB) is a common structural problem that can
generate large costs. Delamination is the separation of layers of a composite material, which produces
points of stress concentration. These points suffer greater traction and compression forces in working
conditions, and they can trigger cracks, and partial or total breakage of the blade. Early detection of
delamination is crucial for the prevention of breakages and downtime. The main novelty presented
in this paper has been to apply an approach for detecting and diagnosing the delamination WTB.
The approach is based on signal processing of guided waves, and multiclass pattern recognition using
machine learning. Delamination was induced in the WTB to check the accuracy of the approach.
The signal is denoised by wavelet transform. The autoregressive Yule-Walker model is employed for
feature extraction, and Akaike’s information criterion method for feature selection. The classifiers are
quadratic discriminant analysis, k-nearest neighbors, decision trees, and neural network multilayer
perceptron. The confusion matrix is employed to evaluate the classification, especially the receiver
operating characteristic analysis by: recall, specificity, precision, and F-score.



Photovoltaic solar panels

A photovoltaic cell is composed of many
layers of materials, each with a specific
purpose. The most important layer of a
photovoltaic cell is the specially treated
semiconductor layer. It is composed of
two distinct layers (p-type and n-type),
and is what actually converts the Sun's
energy into useful electricity through a
process called the photovoltaic effect .
On either side of the semiconductor is a
layer of conducting material which
"collects" the electricity produced

https://energyeducation.ca/encyclopedia/Photovoltaic_cell

Inside a photovoltaic cell

energy

from light
transparent glass
negative
terminal
n-type layer

(semiconductor)

positive junction
terminal
p-type layer
(semiconductor)
energy
i
oo Ryt Freed electrons
available to the circuit
] ] I/ B \-

freed electrons

holes filled by freed electrons

Source: U.S. Energy Information Administration



Photovoltaic solar panels

ML algorithms are used to enhance current structural designs and materials of

photovoltaic cells and solar thermal systems.
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Machine learning analysis on stability of perovskite solar cells

Cagla Odabasi, Ramazan Yildirim

Department of Chemical Engineering, Bogazici University, 34342, Bebek, Istanbul, Turkey

ARTICLE INFO

ABSTRACT

Keywords:

Perovskite solar cells
Data mining

Machine learning
Association rule mining
Stability

Knowledge extraction

In this work, a dataset containing long-term stability data for 404 organolead halide perovskite cells was con-
structed from 181 published papers and lyzed using machine-learning tools of association rule mining and
decision trees; the effects of cell manufacturing materials, deposition methods and storage conditions on cell
stability were investigated. For regular cells, mixed cation perovskites, multi-spin coating as one-step deposition,
DMF + DMSO as precursor solution and chlorobenzene as anti-solvent were found to have positive effects on
stability; SnO; as ETL compact layer, PCBM as second ETL, inorganic HTLs or HTL-free cells, LiTFSI + TBP +
FK209 and FATCNQ as HTL additives and carbon as back contact were also found to improve stability. The cells
stored under low humidity were found to be more stable as expected. The degradation was slightly faster in
inverted cells under humid condition; the use of some materials (like mixed cation perovskites, PTAA and NiO, as
HTL, PCBM + C60 as ETL, and BCP interlayer) were found to result in more stable cells.




Hydropower

Hydropower plants are one of the
oldest mechanisms used to produce
power due to their simplistic
mechanisms.

Very efficient: reaching up to 95%
efficiency for large scale and 85% in
small scale applications.

Control
5, Gate

~ Spillway

Transformer

Penstock

Draft Tube



Hydropower

Machine learning mainly has applications to basic operations and fault detection
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Condition monitoring and fault diagnostics for hydropower plants @mmk

Luka Selak ", Peter Butala, Alojzij Sluga

University Ljubljana, Faculty of Mechanical Engineering. 1000 Ljubljana, Slovenia

ARTICLE INFO ABSTRACT
A"ﬂ'fl_e history: ) This paper presents a condition monitoring and fault diagnostics (CMFD) system for hydropower plants
Received 22 April 2013 (HPP). CMFD is based on the concept of industrial product-service systems (IPS2), in which the customer,

Received in revised form 27 November 2013
Accepted 7 February 2014
Available online 28 March 2014

turbine supplier, and maintenance service provider are the IPS2 stakeholders. The proposed CMFD
consists of signal acquisition, data transfer to the virtual diagnostics center (VDC) and fault diagnostics. A
support vector machine (SVM) classifier has been used for fault diagnostics. CMFD has been
implemented on an HPP with three Kaplan units. A signal acquisition system for CMFD consists of data
acquisition from a unit control system and a supplementary system for high-frequency data acquisition.
Condition monitoring T?\e imp-lemented SVM method exhibits high traix?ing accuracy and thus enables adequfne fau_ll
Fault diagnostics diagnostics. The data are analyzed in the VDC, which allows all stakeholders access to diagnostic
Support vector machines information from anywhere at any time. Based on this information, the service providers can establish
condition-based maintenance and offer operational support. Furthermore, through the VDC, cooperation
between the stakeholders can be achieved; thus, better maintenance scheduling is possible, which will
be reflected in higher system availability.

Keywords:
Industrial product-service systems

@ 2014 Published by Elsevier B.V.



Weather pred ICtlon Evolutionary artificial neural networks for accurate solar radiation
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Bioenergy

Biomass is converted into energy through
different methods: Solid biomass can be
burned to produce steam at high pressure to
move a turbine and a generator. Through a
gasifier, biomass can be converted into
syngas, a synthesis gas that mainly consist
of hydrogen, methane, carbon monoxide,
and carbon dioxide. Additionally, biomass
could be chemically converted into pyrolysis
oil using heat, thus making it suitable for
transportation.




Bioenergy

Machine learning can be used to bypass computationally expensive calculations
of, e.g., the gasification process.

Contents lists available at ScienceDirect
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Predictive modeling of biomass gasification with machine learning-
based regression methods
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ABSTRACT

Article history:
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Available online 18 November 2019

Keywords:

Biomass

Gasification

Machine learning
Decision tree regression
Multilayer perceptron
Support vector regression

Biomass gasification is a promising power generation process due to its ability to utilize waste materials
and similar renewable energy sources. Predicting the outcomes of this process is a critical step to effi-
ciently obtain the optimal amount of products. For this purpose, various kinetic and equilibrium models
are proposed, but the assumptions made in these models significantly reduced their practical usability
and consistency. More recently, machine learning methods have started been employed, but the limited
selection of methods and lack of impl ation of ci ion techniques caused insufficiency to
obtain unbiased performance evaluations. In this study, we employed four regression techniques, i.e.,
polynomial regression, support vector regression, decision tree regression and multilayer perceptron to
predict CO, COz, CHs, H; and HHV outputs of the biomass gasification process. The data set is experi-
mentally collected via downdraft fixed-bed gasifier. PCA technique is applied to the extracted features to
prevent multicollinearity and to increase computational efficiency. Performances of the proposed
regression methods are evaluated with k-fold cross validation. Multilayer perceptron and decision tree
regression performed the best among other methods by achieving R? > 0.9 for the majority of outputs
and were able to outperform other modeling approaches.

© 2019 Elsevier Ltd. All rights reserved.
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Paper Deep Dive

Image-based deep neural network prediction of
the heat output of a step-grate biomass boiler

Pil Téth 2P o =, Attila Garami , Bernadett Csordds 2

Show more

+ Add to Mendeley <& Share =3 Cite

https://doi.org/10.1016/j.apenergy.2017.05.080 » Get rights and content »

Highlights
» Adeep learning-based system was developed for the monitoring of biomass
combustion.

» The system can predict the heat output of a step-grate boiler up to 30min
ahead.

» The water temperature predictions are accurate up to +1°C.

+ The system has great potential in optimizing step-grate biomass combustion.

https://www.sciencedirect.com/science/article/pii/S0306261917305822



Optimizing grate fired biomass boilers

“Grate firing is the most widely used
method for biomass combustion.

Fuel Feeding
Grate-fired boilers are known to Pyro|ysis
have lower efficiency compared to L
e.g., fluidized bed combustors, o e T\
therefore, given the share of the By —_—T s T
technology in global renewable YRS Char Combustion

energy production, it is important to
optimize their operation.”




Direct goal: predict output water temperature in real time

“The motivation behind the prediction system is the desire to eliminate or reduce
uncertainty caused by heterogeneous fuel quality and highly complex combustion
process in systems operated under varying loads. Such a prediction system is
meaningful in boiler systems that operate without installed on-line fuel analysis
systems (e.g., on-line moisture analyzers).”

“The objective of the prediction system was to predict the output water
temperature of the boiler in a multistep-ahead scheme in order to help issue
warnings regarding potential future operating problems and facilitate robust
control.”



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

What difficulties might you face?



Innovation: Use images to predict

“It is hypothesized that flame images contain quasi-instantaneous information
about the combustion process and fuel properties. If this hypothesis is valid, flame
imaging can become an inexpensive and reliable tool for the optimization of boiler
operation, offering additional benefits, i.e., from the point of process safety.”



Data Collection

The boiler was equipped with an on-line
measurement system integrated into a
distributed control system (DCS) that
monitored several operational parameters,
including chamber temperature, return
and output water temperatures, fan
speeds, boiler capacity and hydraulic
pressures of the step-grate, fuel feeding
and de-ashing systems. An additional
electrochemical cell flue gas analyzer was
installed to record CO2 emissions

oOuns WNR

PA: primary air
SA: secundary air

. Drying

. Pyrolysis

. Ignition

. Gasification

. Char burning
. Ash formation

Camera

First part of the grate « >
Second part of the grate

The boiler was integrated into a
sawmill process, producing heat for
steaming timber products. Wood
chips, by-products of the sawing
process were used as fuel. PA and
SA are air sources.



Data Collection

The lens and the camera were protected
by a tube-in-a-tube type cooling system.
Compressed air was used as a coolant.
Small holes in the front-end piece of the
stainless steel housing, outside of the first
optical element in the lens, ensured
positive pressures inside the pinhole lens,
therefore avoiding dust deposition. The
cooling system of the camera maintained
lens and camera temperatures below 30 °
C.

1. Drying

2. Pyrolysis

3. Ignition

4. Gasification
5. Char burning
6. Ash formation

PA: primary air |
SA: secundary air

Camera

Eirst part of the grate" - >
Second part of the grate



Data Collection

Flame images were acquired by using a
Basler Ace acA1300-22gc model digital
camera. The camera utilized a global
shutter CCD sensor. Images were
acquired at a rate of 13 Hz. The exposure = m&
time of the sensor was set at 0.75 ey
ms—this made sure that little to no pixel
saturation and image streaking occured in
the images. The pixel resolution of the
images was 488 x 582. Images were RGB.

*z rl fuocm pqx




Computation problem!

“Since the images had a pixel resolution of 488 x 582 with an RGB bit depth of 24
bit, and the camera operated at 13 Hz, the image data rate was approximately 11
million 8-bit integers per second.”

Too much for real time computing. What can be done?



Solution: Subsampling

Many options for subsampling but here they:

1. Calculate the first four statistical moments (the mean, variance, skewness and

kurtosis) of each color channel

First Moment:
mean - measure of location

Second Moment: A
Standard deviation - measure of

spread - | ts

Third Moment:
skewness - measure of symmetry

Fourth Moment:
kurtosis - measure of peakedness



Solution: Subsampling

Many options for subsampling but here they:

1. Calculate the first four statistical moments (the mean, variance, skewness and
kurtosis) of each color channel

2. Take the spatial gradient of the red channel and calculate the first four
moments of its magnitude and orientation.




0.1--0.2 0.2--0.3 0.3--0.4 0.4--0.5 0.5--0.6 0.6--0.7 0.7--0.8 0.8--0.9

B skewness

Averaged images for
different feature
values.

|VI| mean
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Solution: Subsampling

“The more elegant and exact methods for data reduction (e.g., PCA) were not
used in the current study, because lower statistical moments (the mean and
variance) can be intuitively interpreted by human operators. As part of a
monitoring system for an industrial process overseen by humans, the benefit
of being human-readable outweighed the potential benefits of optimal data
representation.”



Non-image input features

“Seven of the many recorded parameters were selected as inputs for the machine
learning system: boiler capacity percentage, output water temperature, return
water temperature, flue gas O2 content and the capacities of primary and
secondary air fans. It is important to note here that the predicted quantity is the
future values of the output water temperature, but its current (instantaneous) value
is used as an input feature as well. In other words, when computing predictions at
very short times ahead, the predictions should be dominantly determined by the
current value of the output water temperature.”



Data problem!

“Another important point is the temporal synchronization of the measurements
from the DCS with image data. Since the camera operated at 13 Hz, a set of
image features was available at approximately every 80 ms, while the DCS
collected measurements much less frequently, once in every 10 s (the low
sampling frequency was necessary due to strict long-term archiving requirements).

L

What can be done?



Solution: constant interpolation

Constant Approximation (k = 0)

“The coarser data, entries from the
DCS, were synchronized with image
data by using a piecewise constant
extrapolation scheme—the values of the
operating parameters were kept the

cN+1

Linear Approximation (k = 1)
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same as those of the last available entry
in the coarser dataset, until a set of
updated values became available.”
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Quadratic Approximation (k = 2)
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Example data

The boiler has intrinsic
cycles reflected in the data.
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Fig. 6. The mean intensity of the red channel (gray line), combustion chamber
temperature (blue line), output water temperature (red line), flue gas O,-content (green
line) and flue gas CO,-content (magenta dots) as a function of time. Circles denote the
“down” phases of the boiler cycles as they appear in different time series. Arrows denote
the time lag between the imaging measurement and other measurements—arrow colors
indicate the corresponding conventional sensor signal. As seen, all conventional
measurements lag behind the image signal, with CO; and O, showing the quickest, and
combustion chamber temperature showing the slowest response. Missing data in the CO,
signal are caused by the automatic recalibration of the flue gas analyzer. (For



Feature Summary
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Network is run every 80ms
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Model

Using a single block for all
200 predictions runs faster but
had worse performance.
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Training and test data

The training dataset spanned a time interval of 6 h, with approximately 280,000
flame images and 2200 entries from the boiler measurement system.

Test data was collected from a separate 6h interval



Results

The maximum time-ahead of
approximately 28 min was
established based on the errors the
network produced as a function of
time-ahead. Time-ahead values
above 28 min seemed to produce
unacceptably high errors. This
indicates that the proposed network
architecture was unable to find
feasible relations between output
water temperature and the learning
features for predictions for longer
time horizons than 28 min

output water temperature, °C
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Results

After a time-ahead of
approximately 28 min, the RMSE
of predictions was found to
increase rapidly, with the
predictions becoming unrealistic,
in some cases unable to follow
general trends. This is probably
due to the typical cycle time of
the boiler in the training data,
which was 20-50 min. Most
likely, the ANN learns typical
operation patterns including cycle
times.

RMSE"°C
(=]
@

0 5 10 15 20 25
time-ahead, min

Download : Download high-res image (89KB)

Download : Download full-size image

Fig. 8. Mean square error of the deep ANN-based prediction as a function of time-ahead.
As seen, the error increases with the time-ahead up to 1 “C, which corresponds to a
relative error of approximately +1%.

Would this model generalize well to other
boilers?
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m
2 I
<
2o
S|
o
32
23
= o © <
b= o o
2
S
[
0 2
= O
(7))
: -
< o
O £
mm
On
= @®
c ©
N S5 9
= a 2
S E 32
7)) O ©O
@ © Q0
¥ 5%
S ©

12

10

network depth

outputs



Results

“In many applications, artificial neural networks provide superior predictive power
over other techniques. One significant drawback however is that ANN’s do not
provide explanatory insight into the causal relations between the input and output
parameters.”



Results

inputs

noutputs

Sensitivity analysis can provide insight into the “black box” of an ANN by highlighting
important and less important input parameters in the prediction system. The mean
output sensitivity to the parameter z,S.*, was defined as the mean of the partial
derivatives [71] of predictions for a specified time-ahead over the test dataset:

Ninst
gta _ _1 = T (4)
k - Ninst ('3:ck 2
ti=1

where z,k € [1,27] is the kth input.



ReS U ItS Another useful measure of the importance of network inputs is the so-called change
of mean square error (COM) [71] that quantifies importance based on how much the
mean square error of predictions is affected by excluding a particular input entirely
from the calculation. By its original definition, COM is computed by re-training the
network after the removal of one parameter at a time and comparing the resulting

Minputs MSE to the value obtained with all parameters included. In this work, several

— modifications were made to the definition of COM. First, instead of MSE, the RMSE is

used so that the temperature dimension of the measure is retained. Second, instead

of re-training the network, the same training pattern was used, but the weight and
bias associated to the selected input were set to zero, thereby removing the
contribution of the input to the output. Re-training was omitted due to the sensitivity
of the output to the network architecture, which is involuntarily changed when an
input is removed from the feature set. The change of RMSE (COR) for a given time-
ahead ta after removing the contribution of input z;, (COR}") was defined as the

following:
COR}* = RMSEY — RMSE", (5)

where RMSE}* is the RMSE for a given time-ahead evaluated after the contribution
of the input x;, has been removed.
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Results
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The two methods produced agreeing results in the case of many
inputs—capacity, the instantaneous value of the output water temperature, the
input water temperature, the standard deviation of the red channel intensities
and several image gradient-based parameters were deemed as important by
both techniques.
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“The internal relations of the NN revealed by sensitivity and COR analysis are somewhat unintuitive.

Results

For example one would not expect the low importance of parameters derived from the green and blue
channel intensities, since the ratios of channel intensities carry pyrometric information about flame

temperature, a fundamental physical property affecting combustion. Furthermore, the only relatively
important radiometric parameter was the standard deviation of the red channel intensities—one
would expect more sensitivity to the mean red intensity value, since it corresponds to the overall
radiative intensity of the flame.”
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4, Conclusion

This work investigated the applicability of a deep neural network-based prediction
system to a 3MW nominal capacity, step-grate biomass boiler operated under varying,
intermittent loads. The system took inputs from both the on-line measurement system of
the boiler and a color camera monitoring the grate. The objective of the prediction
system was to predict the output water temperature of the boiler in a multistep-ahead
scheme in order to help issue warnings regarding potential future operating problems
and facilitate robust control. Deep, fully connected neural networks were used in parallel
to predict output water temperatures corresponding to different times ahead the present
time. The system was able to produce predictions in real-time, in a rolling fashion
—predictions regarding every time-ahead were available and continuously updated in
real-time. The system was outputting both the expected values and prediction intervals
of future water temperatures. The analysis of prediction errors showed that the error of
short-term predictions (up to 1-2min ahead) was minimal. The errors grew steadily to
up to +1°C for predictions approximately 28 min ahead of the present moment. Further
analysis revealed that the networks can be trained reproducibly in a fixed number of
training epochs. The prediction errors depended on network depth and network width,
indicating that the deep architecture was indeed utilized fully, without overtraining.
Sensitivity analysis showed that the most important input parameters were the current
value of the output water temperature for short-term predictions and several intensity-
and shape-based image parameters for long-term predictions. The network was able to
learn reasonable and intuitive relationships between the future values of output water
temperature, physical principles affecting combustion and “operating experience”
describing the periodicities of operation and the behavior of the flame in the
characteristic phases of operation. The results demonstrate that flame imaging and deep
neural networks can improve the response time and accuracy of predictive systems used
in grate-fired biomass combustion.



Further Resources

ML for renewables review article:
https://www.sciencedirect.com/science/article/pii/S0263876221003312

ML for nuclear review:
https://www.sciencedirect.com/science/article/pii/S1359028621000784

ML for nuclear waste review:
https://www.sciencedirect.com/science/article/pii/S0306454922004820

Short article on “floatovoltaics”:
https://www.nature.com/articles/d41586-022-01525-1
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