Energy Efficiency

Managing power supply and demand



Assignments

Brightspace discussion question:

“What do you think is the biggest contributor to your own energy consumption and
are there ways you could reduce it?”

Due Friday by 5pm.

First programming assignment:
Climate data visualization

Due Fri Feb 3 by midnight.



Climate change in the news




Climate change in the news
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SAN ANTONIO TO
END USE OF COAL
WITHIN FIVE YEARS

But CPS Energy’s decision to switch to Natural Gas highlights the

potential and peril of cities’ clean energy transition.

by DELGER ERDENESANAA
JANUARY 26, 2023, 12:40 PM, CST P

In 2010, San Antonio’s electric utility added a
new coal-fired generator to its J. K. Spruce
power plant.

But the facility struggled financially to
compete with fracked gas, solar, and wind
energy.

Community members were against heavy
pollution generated by burning coal.

This week, board members of CPS Energy
voted to stop using coal at the power plant.

Board members elected to retrofit Spruce’s
newer unit to run on gas, as part of an overall
plan to diversify the utility’s energy mix.

“This victory has been a long time coming,”
said Emma Pabst, a campaigner with the
Sierra Club’s Lone Star Chapter. But she and
others criticized the move toward gas as
shortsighted. “It’s just not the bold action we
need to see on climate.”
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Where does electricity come from?

Renewable energy relies
on sources that can be
regenerated by existing
natural forces.

Non-renewable energy
relies on limited resources.

(Non)renewability does not
determine if a source is
GHG-emitting.
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GHGs from different energy sources

Lifecycle CO,-equivalent emissions (g/kWh)

Median values
calculated by
IPCC 2014
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Blomass Solar,
rooftop

Hydro Nuclear Wind,
onshore

Direct emissions
come from the
generation of power
itself.

Indirect emissions
come from the
production and
maintenance of
power plants.



Labels

“Green” is not a
well-specified term.

People debate if nuclear is
green, and natural gas
advocates have lobbied to
label it as green.

Ohio Gov. Declares Natural Gas 'Green Energy.' It
Doesn’t Work Like That.

A fossil fuel is a fossil fuel.

« A new Ohio bill that calls natural gas a “green energy” opens state

lands to oil and gas drilling.

» Natural gas is defined as a fossil fuel, albeit cleaner than some

counterparts.

« Environment protectors say the new bill threatens Ohio state land to

additional drilling.

popular mechanics



Where does electricity come from in the US?

Net Electricity Generation in the United States By Source (2016)
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Where does electricity come from in the US?

Plant capacity by power source
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https://www.washingtonpost.com/graphics/national/power-plants/

Natural gas has expanded due to
fracking.

Coal is more popular in the East.
Nuclear has a high power:space
ratio, but is used unevenly

across states.

Hydroelectric requires the right
environmental factors.

Oil is only the leading source in
Hawaii

Wind is best in the plain states.
Solar is predominant in

Southwest and certain Eastern
states.



Where does electricity come from globally?

Global energy consumption, 2000 to 2021

-0.8% trend per year from 2016 to 2021 for 0|| Figure 5.2 Electricity generation in the European Union by country and source, 2012
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How does the power grid work?

https://www.wsj.com/video/how-does-the-us-power-grid-work/1671AA83-D0D2-4C
75-913C-B381341159F4 .himl



https://www.wsj.com/video/how-does-the-us-power-grid-work/1671AA83-D0D2-4C75-913C-B381341159F4.html
https://www.wsj.com/video/how-does-the-us-power-grid-work/1671AA83-D0D2-4C75-913C-B381341159F4.html

Grid Balancing

Supply needs to equal demand on a second-by-second basis. Errors of 1% in the
frequency of generated AC currents can cause problems

Direct Current (DC) Alternating Current (AC)
V \Y

The direction of the current is
Iways switched periodically,
and the voltage is also switched.

A VA NYA W
N U\

The direction of the current of the voltage is
always constant.

Demand > Supply --> Blackouts

Supply > Demand --> Damage from excess voltage



Impacts on demand



Impacts on demand
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Impacts on demand
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Impacts on demand

Average Hourly Grid Electricity Use:
Electric Car Households v. Typical Households
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Major cultural events

bpa

How Thanksgiving

Affects Energy Use
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Impacts on supply



Impacts on supply

Hourly RPS-eligible renewable energy production in CAISO
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Impacts on suppl
P pply Power plant planned

maintenance and
unexpected failures

Internally triggered full outage downtime by major cause
(as percentages of the total) for the French and German
operational nuclear power plant fleets
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Impacts on supply

Ukraine Nuclear Plant Pulled Off Line
After Shelling Kindles Blaze

A fire caused by shelling forced the staff of Europes largest
nuclear plant to disconnect from the nation’s power grid, showing
that risks remained at the plant despite the presence of U.N.
experts.

Hevemisatice A []

Major political events

U

|

War in Ukraine: Russia says it may
cut gas supplies if oil ban goes ahead

© 8 March 2022 - B Comments

Russia-Ukraine war

=
% Nord Strecm

e 928 suoply outa for Erope.

| The Nord Stream 1 gas pipeline was inaugurated just over a decade ago



Power storage

° Pumped hydroelectric. Electricity is used to pump water up to a
reservoir. When water is released from the reservoir, it flows down
through a turbine to generate electricity.

. Compressed air. Electricity is used to compress air at up to 1,000
pounds per square inch and store it, often in underground caverns.
When electricity demand is high, the pressurized air is released to
generate electricity through an expansion turbine generator.

. Flywheels. Electricity is used to accelerate a flywheel (a type of rotor)
through which the energy is conserved as kinetic rotational energy.

Electricity Storage Capacity in the United States,
by Type of Storage Technology

25.2 GW U.S. storage capacity 1,574 MW other storage

_Compressed air

When the energy is needed, the spinning force of the flywheel is used AW

to turn a generator. Some flywheels use magnetic bearings, operate in

a vacuum to reduce drag, and can attain rotational speeds up to ‘ - Flywheel
58 MW

60,000 revolutions per minute.

° Batteries. Similar to common rechargeable batteries, very large
batteries can store electricity until it is needed. These systems can use
lithium ion, lead acid, lithium iron or other battery technologies.

. Thermal energy storage. Electricity can be used to produce thermal
energy, which can be stored until it is needed. For example, electricity
can be used to produce chilled water or ice during times of low demand
and later used for cooling during periods of peak electricity
consumption.

EPA



Power Storage

Forms of storing power are too large, too slow, and/or too costly to fully solve the
grid balancing problem.

CLIMATE CHANGE

The $2.5 trillion reason we can’t rely on
batteries to clean up the grid |

Fluctuating solar and wind power require lots of energy storage, and lithium-ion
batteries seem like the obvious choice —but they are far too expensive to play a
major role.

By James Temple July 27,2018




How climate change will impact power

Energy Demand

+ Higher summer temperatures drive
increasing demand for cooling energy
(primarily electricity)

+ Higher winter temperatures drive reduced
demand for heating energy (including
natural gas, oil, and electricity)

Qil/Gas/Coal

« Extreme weather, sea level rise, and
flooding disrupt/damage offshore and
onshore energy operations and facilities

* Reduced water availability constrains
drilling, fracking, and mining operations

« Thawing permafrost and subsidence
reduce access and impact production

Electric Grid

+ Winds, ice storms, and wildfires damage

and

Wind, Solar, and Biofuels
« Changes in wind patterns and solar
impact i

+ Extreme heat reduces power line/trans-

former capacity

« Extreme winds damage wind and solar
infrastructure

+ Flooding can damage
formers/underground lines

Pipelines

* Flooding damages pumping stations,
undermine/scour river crossings

* Loss of electricity impacts pumping
operations

° reduce generat-
ing capacity
« Extreme heat/drought reduces biofuels

Refineries

« Extreme weather/flooding damage
refineries

+ Reduced water availability can constrain
fuel refining and processing

+ Loss of electricity impacts refining
operations

Hydro Power

+ Drought and reduced runoff reduce
power production

« Earlier snowmelt shifts peak production
earlier in the year

+ Flooding increases risk of damage
and disruption

Thermoelectric Power

« Higher air and water temperatures
can reduce power plant efficiency
and capacity

« Reduced water availability can reduce
capacity and lead to shutdowns

* Inland and coastal flooding can disrupt
operation and damages equipment

* Increasing scarcity of freshwater can
limit siting of new generation

Fuel Transport

« Inland and coastal flooding inundate low-lying
roads and rails, and can damage bridges,
river and coastal ports, and storage facilities

* Reduced river runoff can impede barge traffic

+ Extreme weather, flooding, and blackouts can
disrupt distribution outlets and gas stations




Opportunities for ML



Methods for predicting demand

Electric vehicle charging demand forecasting using
deep learning model

f o Advances in Applied Energy
z*w i QL' Volume 2, 26 May 2021, 100025

ELSEVIER

Predicting city-scale daily electricity consumption Zhiyan Yi, Xiaoyue Cathy Liu, Ran Wei, Xi Chen & Jiangpeng Dai

using data-driven models

To cite this article: Zhiyan Yi, Xiaoyue Cathy Liu, Ran Wei, Xi Chen & Jiangpeng Dai (2022)

Wang, Zhe, Hong, Tianzhen & &, Li, Han, Mary Ann Piette Electric vehicle charging demand forecasting using deep learning model, Journal of Intelligent
Transportation Systems, 26:6, 690-703, DOI: 10.1080/15472450.2021.1966627

Show more

To link to this article: https://doi.org/10.1080/15472450.2021.1966627

+ Add to Mendeley o8 Share 133 Cite

https://doi.org/10.1016/j.adapen.2021.100025 Get rights and content
! ABSTRACT

Undera Creative Commons license S, Qpeniaccess Greenhouse gas (GHG) emission and excessive fuel consumption have become a pressing
issue nowadays. Particularly, CO, emissions from transportation account for approximately
nghhghts one-quarter of global emissions since 2016. Electric vehicle (EV) is considered an appealing
option to address the aforementioned concerns. However, with the growing EV market,
" : siis e issues such as insufficient charging infrastructure to support such ever-increasing demand
+ We studied how city electricity use is influenced by weather and emerge as well. Effectively forecasting the commercial EV charging demand ensures the reli-
COVID-19 pandemic. ability and robustness of grid utility in the short term and helps with investment planning

and resource allocation for charging infrastructures in the long run. To this end, this article

. Seven data-driven models were applied and evaluated for data of three presents a time-series forecasting of the monthly commercial EV charging demand using a
i deep learning approach-Sequence to Sequence (Seq2Seq). The proposed model is validated
cities. by real-world datasets from the State of Utah and the City of Los Angeles. Two prediction
targets, namely one-step ahead prediction and multi-step ahead prediction, are tested.
Further, the model is benchmarked and compared against other time series and machine

« Gradient boosting tree model delivers the most accurate prediction with \ L
learning models. Experiments show that both Seq2seq and long short-term memory (LSTM)

CVRMSE of 4%-6%. generate satisfactory prediction performance for one-step prediction. However, when per-
forming the muilti-step prediction, Seq2Seq significantly outperforms other models in terms
« 1°Cincrease of ambient temperature drives up the three cities electricity of various performance metrics, indicating the model's strong capability for sequential data

usage by around 5%. predictions.

» COVID-19 curtailment reduced city-scale electricity usage by 2%-12%.
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Methods for predicting supply = -
Energy
Gaussian process regression(GPR), Support vector regression(SVR), Artificial neural ) [16]: xGBoost reg . SVR, Random forest(RF) [18]; Least
squares support vector machine(SVM) [19]; SVR, ANN, Gradient boosting(GB), RF [20]; RF [21]; GB trees [22]; Multi-layer perceptron(MLP) [24]; Deep neural
Open Ac network(DNN)-principal analysis [25]; F ANN [26]; Efficient deep convolution neural network [27,34]; Linear regression, neural networks, SVR
- . Wi Artificial  [28]; Convolutional neural networks(CNN) [29.37]; DNN [30,31]; Efficient deep CNN [32]; Stacked auto-encoders, back propagation [33]; Predictive deep CNN [35];
- - - - g intelligence  Improved radial basis function neural network-based model with an error feedback scheme [36]; ANN and genetic programming [38]; Long short-term memory(LSTM)
A survey Of MaChlne Learnlng MOdels in Renewable Energy PredICtlons [39.42]; Improved LSTM-enhanced forget-gate network [40]: LSTM-ANN [41]; Auto-LSTM [43]; Shared welght LSTM network [44]; Ensem-LSTM [45]; Instance-based
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Taiwan Hybrid Adaptive neuro-fuzzy inference system, Particle swarm optimization(PSO), Genetic algorithm [23]; Improved dragonfly algorithm-SVM [46]; Deep belief network with
2 Department of Culinary Arts and Hotel Management, HungKuang University, Taichung 43302, Taiwan genetic algomhrns [47]; Type-2 fuzzy neural network-PSO [48] Multi-objective ant Lmn algonmm -Least squares SVM [49]; Complete ensemble EMD-multi-Objective
R \ ! i A grey wolf ELM [50]: Mode ion(VMD): ch: ELM [51]; Coral reefs optimization algorithm with substrate
3 Dep it of Ir 1 Mar National Chi Nan University, Nantou 54561, Taiwan layer, ELM [52]; Stacked extreme-leaning machine [53]; VMD-singular spectmm analysis-LSTM-ELM [54]; Ensemble EMD-deep Boltzmann machine [55]; ELM-
" Author to whom correspondence should be addressed. Improved complementary ensemble EMD with Adaptive noi: moving L ) [56]; Bayesian model averaging and Ensemble
learning [57]; Sparse B: ian-based robust [58]: Keme| principal component analysis-Core vector regression-Competition over resource [59];
Wavelet packet decompos‘nion—LSTM [60]; Empirical wavelet neural (RNN) [61]
Appl. Sci. 2020, 10(17), 5975; https: 0rg/10.3: pp10175975
Artificial Gated recurrent units [64]; RF [65], SVR, RF [66]; RF [67]: RF, gradient boosted regression, extreme GB [68]; Linear regression, decision trees, SVM, ANN [69]; ANN,
intelligence  SVM, GB, RF [70]; ANN [71,72,73,74,75,119,120,121]; CNN [76]; DNN [77,78.79); DNN, RNN, LSTM [80]; LSTM, auto-LSTM, gate recurrent unit(GRU), machine
Percent of renewable energy source in total literature S learning and statistical hybrid model [81]; LSTM [82,84,85]; LSTM, GRU [83]; Copula-base nonlinear quantile regression [88]; Multi-method [122]; Smart persistence
pop— [123]; K- t GB [124]; K- t SVM [125]; Angstrom-P tt [126]; Multilayer feed-forward neural network [127]; Support vector
Tidal e?o;‘;ma classification [128]; GPR [129]; Regime-dependent ANN [130]; ELM [131]; Adaptive forward-backward greedy algorithm, leapForward, spikeslab, Cubist and
Wave 3.85% | bagEarthGCV [132]; Static and dynamic ensembles [133]
Biomass | Statistical ARIMA [62,63]
3.85%
Hybrid Wavelet decomposition-Hybrid [86]; Improve moth-flame optimization algorithm-SVM [87]; SVM-PSO [89]; Cluster-based approach, ANN, SVM [90]; SVM, Horizon,
General [134]; ANN, Principle component analysis [135]; Auto regressive mobile average, MLP, Regression trees [136]; Ensemble EMD-least square SVR [137]; Least
Hydropower absolute shrinkage and Selection operator, LSTM [138]; RF, SVR, ARIMA, k-nearest neighbors [139]; Mycielski-Markov [140]; VMD-deep CNN [141]; PSO-ELM
| 25% | [142,143]; Multi-objective PSO [144]; Artificial bee colony-empirical models [145]; Gated recurrent unit and Attention mechanism [146]
Artificial Bayesian linear regression [106]
Solar intelligence
43.85% P
Hybrid Grey wolf optimization-adaptive neuro-Fuzzy inference system [91]; Long-medium and short-term, Bayesian ic dynamic [107]
. Artificial Linear k-nearest SVM, Decision tree regression [93]; Gradient boosted regression trees [94]; Decision tree regression, MLP [95]
Biomass
intelligence
Hybrid SVM-Simulated annealing [96]; PSO-SVM [108]
Artificial Fuzzy inference systems, ANN [109]; GPR [110]; Interval type-2 fuzzy inference system [111]
Wave intelligence
—wind ! Hybrid Improved complete ensemble EMD-ELM [97]; Bayesian optimization-grouping genetic algorithm-ELM [98]
S59.29% Artificial  Wavelet-SVR [99]
Tidal g
intelligence
Hybrid Wavelet and ANN, Fourier series based on least square method [100]; GPR-Bayesian [101]; Ensemble EMD-Least squares SVM [102]; Modified harmony search [103]
EmSolar ®Wind ®Hydropower & Biomass MWave MTidal M Geothermal pn Artificial  LSTM [104]; Multiple regression-ANN [112]; RF [113]
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Methods for measuring supply

“How clean is my electricity if | use it right now?”

Now your customers can know. Our breakthrough, proprietary technology detects which power plants are
powering your devices and when. Our solutions can empower any loT device, from thermostats to electric
vehicles, to automatically prioritize energy from cleaner generation sources.

Every time you use electricity, that instantly causes a single power plant to make a little more. But... which power plant? Usually, it’s a fossil fuel plant
like coal, which is why using energy creates pollution. Yet as renewable energy keeps growing, there are more and more moments today when using
electricity instead only activates a clean power plant like wind or solar. That’s creating a powerful new way to switch to cleaner energy: timing.

And thanks to the growing Internet of Things, today there are now over 20 billion devices worldwide that can effortlessly and automatically use
electricity at particular times. So, if your company manufactures, owns, or operates a lot of lIoT devices—anything from smart thermostats to electric
vehicles to energy storage—you actually have the latent ability to effortlessly and automatically run on cleaner energy.

WattTime is a nonprofit founded to make it easy for manufacturers and operators of smart devices to go green this way without affecting their device
performance, user comfort, or even cost. We’ve packaged this into a set of simple tools we call Automated Emissions Reduction, like real-time and
forecast emissions data through our API. Now, one of the most powerful environmental actions a company can take comes with set-it-and-forget-it
simplicity.



Methods for power grid function

Predicting failures:

Machine Learning for the
New York City Power Grid

Cynthia Rudin’, David Waltz*, Roger N. Anderson*, Albert Boulanger®, Ansaf Salleb-Aouissi*, Maggie
Chow?, Haimonti Dutta*, Philip Gross*!, Bert Huang*, Steve lerome?, Delfina Isaac!, Arthur Kressner?,

Rebecca J. Passonneau*, Axinia Radeva®, Leon Wu*

Abstract—Power companies can benefit from the use of kr dge discovery methods and machine learning for preventive
maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk
of failures for components and systems. These models can be used directly by power companies to assist with prioritization of
maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint,
terminator and transformer rankings, 3) feeder MTBF (Mean Time Between Failure) estimates and 4) manhole events vulnerability
rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or real-time,
incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of
results via cross-validation and blind test. Above and beyond the ranked lists and MTBF are business mar it interfaces
that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several
important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the
processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the
challenges in working with historical electrical grid data that were not designed for predictive purposes. The “rawness” of these data
contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to
assist in maintaining New York City's electrical grid.

Index Terms—applications of machine learning, electrical grid, smart grid, knowledge discovery, supervised ranking, computational
sustainability, reliability

Grid design:

Conferences > 2018 IEEE PES Innovative Smar... @

Guided Machine Learning for Power Grid Segmentation

Publisher: IEEE
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Abstract:

The segmentation of large scale power grids into zones is crucial for control room operators when managing
the grid complexity near real time. In this paper we propose a new method in two steps which is able to
automatically do this segmentation, while taking into account the real time context, in order to help them
handle shifting dynamics. Our method relies on a “guided” machine learning approach. As a first step, we
define and compute a task specific “Influence Graph” in a guided manner. We indeed simulate on a grid state
chosen interventions, representative of our task of interest (managing active power flows in our case). For
visualization and interpretation, we then build a higher representation of the grid relevant to this task by
applying the graph community detection algorithm Infomap on this Influence Graph. To illustrate our method
and demonstrate its practical interest, we apply it on commonly used systems, the IEEE-14 and IEEE-118. We
show promising and original interpretable results, especially on the previously well studied RTS-96 system for
grid segmentation. We eventually share initial investigation and results on a large-scale system, the French
power grid, whose segmentation had a surprising resemblance with RTE's historical partitioning.



Paper Deep Dive

Machine Learning for AC Optimal Power Flow

Neel Guha' Zhecheng Wang” Matt Wytock® Arun Majumdar’

Abstract

We explore machine learning methods for AC
Optimal Powerflow (ACOPF) - the task of opti-
mizing power generation in a transmission net-
work according while respecting physical and en-
gineering constraints. We present two formula-
tions of ACOPF as a machine learning problem:
1) an end-to-end prediction task where we di-
rectly predict the optimal generator settings, and
Z) a consrrainr predicrion task where we predict
the set of active constraints in the optimal solu-
tion. We validate these approaches on two bench-

https://arxiv.org/pdf/1910.08842.pdf mark grids.



The problem of “optimal power flow”

The objective of OPF is to find a steady state operating point that minimizes the
cost of electric power generation while satisfying operating constraints and
meeting demand.

How can you most efficiently balance the grid?



The problem of “optimal power flow”

The objective of OPF is to find a steady state operating point that minimizes the

cost of electric power generation while satisfying operating constraints and
meeting demand.

How can you most efficiently balance the grid?
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OPF is hard

“In addition to minimizing generator costs, solutions must adhere to physical laws
governing power flow (i.e. Kirchhoff's voltage law) and respect the engineering
limits of the grid. As a result, ACOPF is computationally intractable under the
demands of daily grid management. In order to account for rapid fluctuations in
power demand and supply, grid operators must solve ACOPF over the entire grid
(comprising of tens of thousands of nodes) every five minutes.”

Current mathematical solvers either fail to converge within this time frame or
produce suboptimal solutions.



OPF is important

“A 2012 report from the Federal Energy Regulatory Commission estimated that the
inefficiencies induced by approximate-solution techniques may cost billions of
dollars and release unnecessary emissions”

Variants of the OPF that include how much different sources of energy cost at
different times can also save money.



Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

If successful, how could this system be useful?



Approach

In this paper, we observe that it should be possible to learn a model that can
predict an accurate solution over a fixed grid topology/constraint set. Intuitively, we
expect some measure of consistency in the solution space - similar load
distributions should correspond to similar generator settings.This suggests
an underlying structure to the ACOPF problem, which a machine learning model
can exploit.

Neural networks have demonstrated the ability to model extremely complicated
non-convex functions, making them highly attractive for this setting. A model could
be trained off-line on historic data and used in real-time to make predictions on an
optimal power setting.



Neural networks
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“Train a model to directly predict the
optimal generator setting for a

given load distribution. This

is challenging, as the model’s
output must be adherence

with physical laws/engineering
limits.”

particular model. We examine a range of different architec-
tures and training strategies. We performed a grid search
considering models with 1-2 hidden layers, 128/256/512
hidden neurons, ReLU/Tanh activations. We also exper-
imented with vanilla MSE loss, and a variant with lin-
ear penalties for constraint violations (described in Section
3.1). Each model was trained with Adam (Ir = 0.001) until
loss convergence, for a maximum of 2000 epochs.



Inputs and Outputs

3.1. End-to-end Prediction

In this setting, we pose the AC OPF problem as a re-
gression task, where we predict the grid control vari-
ables (PY and V) from the grid demand (P* and
Q,-L ). These fix a set of equations with equal number
of unknowns, which can be solved to identify the re-
maining state values for the grid. Formally, given a
dataset of n solved grids with load distributions X =
{[PF,...P5.QF, ....QE]}~, and corresponding optimal
generator settings Y = {[PS,...P§,VE,...,V&I}r,.
our goal is to learn fs : X — ) which minimizes the mean-
squared error between the optimal generator settings Y and
the predicted generator settings Y. Solving for the remain-

Model will depend on specifics
of grid structure.
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Datasets

IEEE provides simulated grid data
based on real US grid properties.

We validated approaches for end-to-end prediction and con-
straint prediction on IEEE 30-bus * and 118-bus test cases*.

These test cases include predetermined constraints.

4.1. Dataset Generation

The IEEE test cases include a pre-calculated load distri-
bution (denoted as x". In order to construct a dataset for
each case, we repeatedly sample candidate load distribu-
tions ' ~ Uniform((1 — §) - 2*, (1 + ) - z*), for some
fixed . We identify 3’ by solving the OPF problem for
2’ via Matpower (Zimmerman et al., 2011). In some cases,
the solver fails to converge, suggesting that the sampled =’
has no solution given the grid constraints. In this case, we
discard z".

We generated 95000 solved grids for casel18 and 812888
solved grids for case30 with § = 0.1 (a 10% perturba-
tion to the IEEE base demand). Interestingly, we observe
that while 100% of the samples generated for case118 were
successfully solved, only 81.2% of the samples for case30
were successfully solved. For all prediction tasks, we used
a 90/10 train-test split and report results on the test set.



Evaluation

4.2. End to end prediction

We evaluate task performance along two metrics:

e Legality Rate: The proportion of predicted grids which (Reliability)
satisfy all engineering and physical constraints.

e Avg. Cost Deviation: The average fractional difference (Optimality)
between the cost of the predicted grid, and the cost of the

1 B, d cost, ,
true grid: — > " |1 — bt | over legal grids.

n true cost;



Results



Results

Table 1 reports the best performance for each grid type. For
case30, the optimal model was a two layer neural network
with tanh activations, and no loss penalty. For casel18, the
optimal model was a three layer network with 512 hidden
neurons, RelLU activations, and a constraint loss penalty.
Interestingly, we observe better performance on casel18
than case30. Though we would intuitively expect task dif-
ficulty to scale with grid size, this result suggests that other
factors could affect a model’s generalization ability. In par-
ticular, smaller grids could be less stable, and thus more
likely to produce a wide range of (less predictable) behav-
1or under varying demand distributions. We also observe
that the cost of the optimal model predictions were within
1% of the optimal cost.

Not great! Not bad!

Grid Legality Rate Avg. Cost Deviation
case30 0.51 0.002
casel 18 0.70 0.002

Table 1. End-to-end prediction performance. Average cost devia-
tion is only reported for legal grids.
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