Energy Efficiency

The role of buildings and cities



Assignments

Brightspace discussion question:

“What do you think is the biggest contributor to your own energy consumption and
are there ways you could reduce it?”

Due Friday by 5pm.

First programming assignment:
Climate data visualization

Due Fri Feb 3 by midnight.



Climate change in the news




Climate change in the news

Reading Kit Climate Stripes:
https://twitter.com/ed hawkins/status/16194560166384
27136



https://twitter.com/ed_hawkins/status/1619456016638427136
https://twitter.com/ed_hawkins/status/1619456016638427136
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Energy efficiency as a way to reduce GHGs

World Greenhouse Gas Emissions in 2016
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Buildings and Energy EIA

U.S. energy flow, 2021
quadrillion Btu
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Residential and commercial building energy consumption makes up 40% of the total
energy consumption in the United States.

Energy is measured in British thermal unit, defined as the amount of heat required to raise the
temperature of one pound of water by one degree Fahrenheit
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Different practices
across different
countries lead to
different energy use
intensities.

The fraction of energy
used by buildings is
similar in the EU (40%)
but lower on average
across the globe (32%).
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NYC Building Efficiency Grades

Building Energy
Efficiency Rating
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NYC Building Efficiency Grades

R - —
Building Energy -\ Buildings in New York City are
Efficiency Rating . .
e responsible for 70% of emissions

www.citysignal.com



NYC Building Efficiency Grades

Building Energy |
Efficiency Rating

www.citysignal.com

Local Law No. 95 requires all buildings to have an efficiency rating
based on Energy Star and EPA guidelines. In October 2020, an
additional rule was added that larger buildings had to have these
scores posted on their main entrances. That’s around 50,000
buildings and nearly two-thirds of the building area in the city.

The rankings come from Energy Star and are based on energy
consumption, water consumption, and greenhouse gas emissions.

Buildings must submit energy information to the government for a
12 month period of time, and a list of fuels burned and converted
on site. These criteria add together for a total score of anywhere
between 1-100.



NYC Building Efficiency Grades

Building Energy |
Efficiency Rating

www.citysignal.com

Of the approximately 40,000 buildings that submitted reports when
the law was first implemented, about half of them received a D.
Thousands submitted nothing, receiving F’s. Buildings like The
New York Stock Exchange and Trump Tower received some of the
lowest scores, while the Flatiron Building and the Empire State
Building did rather well.

In 2024 Local Law No. 97 goes into effect, which would fine
buildings with lower scores. Depending on how low the scores are,
the buildings could receive fines as high as hundreds of thousands
of dollars. This has incentivized many buildings to change their
energy consumption and distribution.



NYC Building Efficiency Grades

Building Energy |
Efficiency Rating

www.citysignal.com

Of the approximately 40,000 buildings that submitted reports when
the law was first implemented, about half of them received a D.
Thousands submitted nothing, receiving F’s. Buildings like The
New York Stock Exchange and Trump Tower received some of the
lowest scores, while the Flatiron Building and the Empire State
Building did rather well.

In 2024 Local Law No. 97 goes into effect, which would fine
buildings with lower scores. Depending on how low the scores are,
the buildings could receive fines as high as hundreds of thousands
of dollars. This has incentivized many buildings to change their
energy consumption and distribution.



How to increase building efficiency

post-war gas low-rise M® Building Touchpoint
Refinancing/ Energy
Anytime/ Midcycle Substantial Tenant Payback Savings

Energy Conservation Measure Anywhere Retrofit Retrofit Turnover (years) Cost per SF per SF
8 Install Exhaust Fan Timers . . 5.0 $ |
O Install Submetering . . 2.0 §88 ==
O Install Solar/Photovoltaic . 17.0 $88% -
O Upgrade Motors . . 55 86 =

: Upgra ° ° 2.5 $ =
ng Sensor . . 4 $ =
& Upgrade Burner . 6.5 $$ |
@ Upgrade Boiler . >20 $888 _—
I} Install TRVs and Zone Control . ) 6.5 888 ==
I} Install Heating Controls and Thermostats . . 2.5 $$ ==
Il Insulate Condensate Tank . . . 25 $ -
M Replace or Repair Steam Traps . o . 3.5 $$ =
Ml Insulate Pipes . . . 2.0 $ =
I} Install or Upgrade Master Venting . . 3.0 $$ E—
@. Separate DHW from Heating . 6.5 §88 =
@ Install Low-Flow Showerheads . . . » 1.0 $s =
@: Install DHW Controls . . . 0.5 $ =]
@. Install Low Flow Aerators . . . . 1.5 $$ [==]
@. Insulate Pipes and Tank . ° . 6.0 $ =
Energy Conservation Measure Cost per Square Foot Energy Savings per SF (kBtu)  Notes
%} Ventilation & Cooling Il Heating Distribution $ <$.05 = 0-3 This list of Energy Conservation Measures (ECM) is based on
O Other $$ $0.05-$0.25 ] 31-8 LL87 audit data and therefore may be incomplete. Suggested
%% Lighting 2. Domestic Hot Water $$$ $0.26-61.00 - 5112 EC;V‘S for each Building Touchpoint are repres o ive,
@ Heating Equipment $$$$ >$1.00 12 :;ecri‘;:; building Srator and . it of equip ane::ulgt

Y quip
be considered in determining the appropriate packages of
ECM s for individual buildings. The first step of any upgrade
should be to work with a qualified service provider to
develop a scope of work appropriate for your building.

be-exchange.org



Urban vs Suburban Energy Consumption

@ MapBox
Avg. Total Household Carbon Footprint by CoolClimate Network

Low density suburban development is
2.0-2.5% as energy and GHG
emissions intensive as high-density
urban core development per capita.




Urban vs Suburban Energy Consumption

Avg. Total Household Carbon Footprint by CoolClimate Network
Average annual household carbon footprint by Zip Code Tabulation Area

With shared resources, shared walls and
generally smaller square footage,
households in buildings with five or more
units consume only 38 percent of the
energy of households in single-family
homes (Brown et al., 2005).

At a suburban density of four homes per
acre, carbon dioxide emissions per
household were found to be 25 percent
higher than in an urban neighborhood with
20 homes per acre (Mazza, 2004).



Benefit of urban density: district heating



http://www.youtube.com/watch?v=j1Vo6JmjaKc

Opportunities for ML influence

District Heating

e  Control—as a material flow process, a large portion of DH systems rely on improving control mechanisms at various points in
the value chain. Optimal control comes down to the determination of the best control signals for the four levels of control in DH
networks [11], as shown in Figure 1. Inadequate incentives and control strategies often result in wasteful energy supply
margins.

e Analytics—insufficient use of analytic tools for evaluating the result from a combination of control strategies leads to lack of
information about the true performance of the DH system. By improving the use of analytics, more comprehensive situation
assessment can be used in planning and feedback to the control units, akin to model predictive control systems.

Opportunities for Machine Learning in District Heating

by 2} Gideon Mbiydzenyuy 1.* 22 £} Stawomir Nowaczyk 2 22 £} Hikan Knutsson 3 &,

A
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https://www.mdpi.com/2076-3417/11/13/6112
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4.1. Advantage
This paper reviews papers that apply RL methods to intelligent buildings.
O rt : t' f M L : fl According to our research, applying RL to intelligent buildings can help reduce
p po u n I I eS O r I n u e n Ce building energy consumption and achieve energy savings. The exploratory and
exploitative nature of RL makes it unnecessary to build a complete system model,

and it can demonstrate superior performance and efficiency over traditional control
methods when dealing with intelligent buildings control problems with uncertain

Automated thermostats/energy control information.

4.2. Limitations

Applying RL to intelligent buildings inevitably has some problems. Paper [55] using

JOU rnal of Bui|ding Enginee ri ng DQN and DDPG to control refrigerant control parameters also points out that there

Volume 50, 1 June 2022, 104165 are still many problems to be investigated when applying RL to real buildings. For

ELSEVIER

example, the training time, the modeling of the environment, the difference
between the simulated environment and the real environment, the cost of applying
Applica’[ions of reinforcement learning for to the real environment, etc. These are all obstacles to the application of RL to

g . . building control.
building energy efficiency control: A review H

4.2.1. Cost
it a,b,1 : a,b,1 f b,c 0 =% a,b i a a,b
e i o i i RL itselfis a process of learning by trial and error, so RL agents will perform actions
Show more during the training phase to obtain results that do not meet our expectations, or

o i o meriley: e i — even the opposite of what we expect to achieve. If RL is deployed directly in a real
0 lvienaeley are e

building for training and learning, it will bring great inconvenience to occupants

and even bring damage to the equipment, resulting in uncontrollable actual costs
https://doi.org/10.1016/j.jobe.2022.104165 Get rights and content

and easily bring security problems. For example, paper [52] applies RL to smart

grids, where the security of the grid is largely and directly related to the cost issue.
The paper proposes a security exploration approach to constrain the operation of

httDS //WWW sciencedirect.co m/SCIe n Ce/a rticl e/DI |/8235 active distribution grids. In the paper, a security layer is composed directly on top of’
27 1 022200 1 784 the participant network of the DDPG, which predicts the change of the constrained

state and thus limits the violation of the working operation of the active

distribution grid.


https://www.sciencedirect.com/science/article/pii/S2352710222001784
https://www.sciencedirect.com/science/article/pii/S2352710222001784

Highlights

. Cities want to accelerate building energy systems retrofits to reduce
energy use.

Opportunities for ML influence

« New York City energy audit data is applied to estimate energy retrofit
eligibility.

+ An interpretable classifier is trained to identify retrofit opportunities.

|[dentifying retrofit targets

« Retrofit eligibility determined from only the most relevant building

features.
Energy and Buildings
pRmETs petembe sl = At + Building stakeholders can use results to rapidly identify retrofit
opportunities.

ELSEVIER

Applications of machine learning methods to
identifying and predicting building retrofit

opportunities

Daniel E. Marasco & &, Constantine E. Kontokosta ngh]_lghts

Show more

T T " « Machine learning-based surrogate model to predict near-optimal

retrofit solutions.

« Validated with a conventional building simulation-optimization model.

Applied Energy

Volume 281, 1 January 2021, 116024

« Case study reveals good accuracy, ease of application and computational

ELSEVIER

efficiency.
A machine learning-based surrogate model to « Convenient for non-expert decision makers due to small set of input
approximate optimal building retrofit solutions e
Emmanouil Thrampoulidis bo =, Georgios Mavromatidis ©, Aurelien Lucchi d Kristina Orehounig ° « The mOdel is Scalable and applicable for retrofit analyses in wide-areas.

Show more

+ Add to Mendeley o2 Share 193 Cite



Opportunities for ML influence

Estimating and predicting building energy consumption

Physical Simulations:

“One way of estimating building energy
consumption, in the absence of actual sensor data,
is to create physical building models with a
“template” of representative buildings, then run
thermodynamic simulations to estimate the energy
demands. These “engineering” models of building
energy consumption are computationally expensive
and cannot capture the wide variety of different
buildings present in cities, as modeling each type of
building requires very detailed input data, which is
costly to collect. *




Paper Deep Dive

Y, Applied Energy
EAN Volume 208, 15 December 2017, Pages 889-904
ELSEVIER

Machine learning approaches for estimating
commercial building energy consumption

Caleb Robinson * &3, Bistra Dilkina* & &3, Jeffrey Hubbs © &, Wenwen Zhang ® &, Subhrajit Guhathakurta ® &

, Marilyn A. Brown © &, Ram M. Pendyala ® &

Show more

+ Add to Mendeley «2 Share =s Cite

https://doi.org/10.1016/j.apenergy.2017.09.060 Get rights and content

https://www.sciencedirect.com/science/article/pii/S0306261917313429



https://www.sciencedirect.com/science/article/pii/S0306261917313429

Brainstorm

What kind of data would you want to have to be able to approach this problem?
What kind of methods would you apply?
How would you measure success?

If successful, how could this system be useful?



Overall goals of this work

Our two main objectives are to:

(1) train machine learning models to predict the annual major fuel, or the
combination of electricity, natural gas, and fuel oil, consumption of commercial
buildings from easily accessible descriptive features of buildings

(2) validate the models’ ability to be applied to specific metropolitan areas.
Specifically, we train and test our models using national survey data from CBECS,
then use true energy consumption values from New York City’s Local Law 84
(LL84) dataset to validate the ability of the nationwide CBECS-trained models to
be applied accurately to a specific metropolitan area.



Commercial Buildings Energy Consumption Survey

eia’

building owners and
managers provide
data
information about
the building’s
structure, use,
energy sources and
end uses, and
equipment

some building
respondents also
provide energy
usage data

some building
respondents do
not provide
energy usage data

energy
usage data
collected
from energy
providers

geographical
information

.|

weather

data

+

complete building record

PHASE 1: Buildings Survey PHASE 2: Energy Suppliers Survey PHASE 3: Non-Survey Data

e The only independent, statistically representative source of national-level data on the characteristics
and energy use of commercial buildings

e Building characteristics collected through an in-person or web survey of managers of 6,436 buildings,
representing 5.9 million buildings in the United States.

e Energy usage data collected from suppliers of electricity, natural gas, fuel oil, and district heat



NYC Local Law 84 Dataset

The New York City Benchmarking Law, known as Local Law 84 (LL84), requires buildings that are
over 50,000 square feet, or lots with buildings with over 100,000 square feet combined, to report their
annual energy and water consumption values in a standardized manner using the EPA’s portfolio
manager database.

This consumption data, along with some of the building characteristics (such as: total square feet, year
built, primary building activity, and energy use intensity ), have been released annually since 2011.

We augment each row in the LL84 dataset with heating degree day (HDD) and cooling degree day (CDD)
features from 2015 CDD and HDD raster maps.

We further join the LL84 dataset to the New York City PLUTO dataset in order to get more information,
such as the number of floors, for each building in the LL84 dataset.

After this processing, we have information on 2612 commercial buildings, which we will simply refer to as
the LL84 dataset.



Data Features

The CBECS data has more features than LL84, such as, ‘Number of Employees’,
‘Number of X-ray machines’, or ‘Insulation upgraded'.

The extended feature set contains all features available in CBECS.

“The common feature set contains only the features from CBECS that are also
available in the augmented LL84 data, namely: principal building activity,
square footage, number of floors, heating degree days, and cooling degree
days.”



Building types (‘Principal building activity’)
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Data Features

CDD and HDD:

If the temperature mean is above 65°F,
we subtract 65 from the mean and the
result is Cooling Degree Days. If the
temperature mean is below 65°F, we
subtract the mean from 65 and the
result is Heating Degree Days.

Heating and Cooling Degree Days

Degree days are based on the assumption that when the outside temperature is 65°F,
we don't need heating or cooling to be comfortable. Degree days are the difference
between the daily temperature mean, (high temperature plus low temperature divided
by two) and 65°F. If the temperature mean is above 65°F, we subtract 65 from the
mean and the result is Cooling Degree Days. If the temperature mean is below 65°F,
we subtract the mean from 65 and the result is Heating Degree Days.

Example 1: The high temperature for a particular day was 90°F and the low
temperature was 66°F. The temperature mean for that day was:

(90°F + 66°F )/ 2 = 78°F
Because the result is above 65°F:

78°F - 65°F = 13 Cooling Degree Days
Example 2: The high temperature for a particular day was 33°F and the low
temperature was 25°F. The temperature mean for that day was:
(33°F + 25°F )/ 2 = 29°F
Because the result is below 65°F:

65°F - 29°F = 36 Heating Degree Days.



Target: ‘Annual Major Fuel Consumption’ (MFBTU)

Has a log-normal distribution, so the aim is to predict the log of the actual MFBTU

Distribution of MFBTU

400 -
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Methods

Linear regression, ridge regression, RBF kernel support vector regression (SVR),
elastic net regression, linear kernel support vector regression (linear SVR),
adaboost regression, bagging regression, gradient boosting regression (XGBoost),
random forest regression (RF regressor), extra trees regression (ET regressor),
multi-layer perceptron regression (MLP regressor), and k-nearest neighbor
regression (KNN regressor)



Validation and Evaluation

To validate the models they record the cross-validated mean absolute error (mean AE),
median absolute error (median AE), and the r? between the true and predicted values on the
CBECS model.

They evaluate the generalization ability of models by using the augmented LL84 dataset.



Results

Table 2. Common features. Results of all machine learning models trained on the common

feature set. The mean absolute error (mean AE), median absolute error (median AE), and the 72

OMcan AE and loMﬂlian AE

values are calculated in terms of log,;, MFBTU values. The 1 columns

show the average number of multiples away the model’s estimate is from the true value. The

values following “+” are the standard deviations of each metric calculated over the 10 cross
validation folds.



Common features Mean absolute 1QMenn AE Median absolute ~ 1pMedian AE r?

R I t error error

e S u S XGBoost 0.30 £0.01 1.99 + 0.06 0.22 +0.01 1.66+0.03 0.82+0.02
Bagging 0.33+0.01 2.13+0.07 024+0.01 1.73+0.05 0.78+0.03
MLP Regressor 0.33+0.01 2.16+0.05 025+0.01 1.77+0.04 0.78 +0.02
Random Forest 0.33+0.02 2.13+0.07 024+0.01 1.73+0.05 0.78+0.02
Regressor
Extra Trees Regressor 0.34+0.02 217 +0.08 024+0.01 1.74+0.05 0.76+0.03
SVR 0.39+0.01 2.44+0.07 029+0.01 1.95+0.04 0.70+0.03
KNN Regressor 0.43+0.01 2.68+0.08 032+0.02 210+0.07 0.65+0.03
AdaBoost 043+0.03 2.71+0.16 036+0.03 229+0.17 0.68+0.03
Linear SVR 0.51+£0.02 3.28 +0.15 040+0.02 2.54+011 0.52+0.04
Linear Regression 0.52+0.02 3.33+0.13 043+£0.02 2.72+0.12 0.53+0.03
Ridge Regressor 0.52+0.02 3.33+0.13 043+0.02 2.72+0.12 0.53+0.03
ElasticNet 0.76£0.02 5.75+0.32 0.67£0.03 4.67+0.35 0.09+0.01
Lasso 0.79+0.02 6.17 +0.35 0.69+0.03 4.92+0.38 0.00=+0.00

Table 2. Common features. Results of all machine learning models trained on the common
feature set. The mean absolute error (mean AE), median absolute error (median AE), and the r?
values are calculated in terms of log,, MFBTU values. The 10M¢® AE and 10Medi2n AE ¢olumns
show the average number of multiples away the model’s estimate is from the true value. The

values following “+” are the standard deviations of each metric calculated over the 10 cross
validation folds.



Common features Mean absolute 1QMenn AE Median absolute ~ 1pMedian AE r?

Results

XGBoost 0.30£0.01 1.99 = 0.06 0.22£0.01 1.66+0.03 0.82+0.02

Bagging 033001 213+0.07 024001 1.73+0.05 0.78+0.03
T Mieanibsdiute: 10M6AE  Hfediamdbsciute 1gMEsAE MLP Regressor 033001 216+0.05 025+0.01 177 +0.04 0.78+0.02

SEReK SPOT Random Forest 0.33+0.02 2130.07 024+0.01 1.73+0.05 0.780.02

XGBoost with common 0.30+0.01 1.99+0.06 022:0.01 1.66+0.03 0.82+0.02 Regressor
features

Extra Trees Regressor 0.34+0.02 217 +0.08 024+0.01 1.74+0.05 0.76+0.03
XGBoost 0.23 +£0.01 1.69 +0.02 0.17 +£0.01 1.48+0.03 0.89 +0.01

SVR 039001 2.44+0.07 029+001 195+0.04 0.70+0.03
Linear regression 024 +0.01 1.75+0.02 0.19+0.01 1.53+0.04 0.88+0.01
T — R — T KNN Regressor 043001 2.68+0.08 032002 210£0.07 0.65z0.03
SVR 025+0.01 1.79 +0.04 0.19+0.01 1.53+0.03 0.87+0.01 AdaBoost 043+0.03 2.71+0.16 036+0.03 229+0.17 0.68+0.03
Bagging 025+001 179+0.04 018001 153004 087002 Linear SVR 0.51+0.02 328+:0.15 040002 254+011 0.52+0.04
Random forest regressor 025:20.01181L79: 0.0% D18 E0.01NTSS 008087 2 00T Linear Regression 052002 333:013 043002 272+012 0.53£0.03
Extra trees regressor 025+0.01 1.79+0.04 019+0.01 1.54+0.03 0.87+0.01 .

Ridge Regressor 0.52+0.02 333:0.13 043002 272+0.12 0.53+0.03
Linear SVR 026+0.01 1.80+0.03 020+0.01 1.58+0.04 0.87+0.01

ElasticNet 0.76+0.02 5.75+0.32 0.67+0.03 4.67+035 0.09+0.01
AdaBoost 0.32+0.01 2.07+0.05 026+0.01 1.80+0.05 0.82+0.01

Lasso 079+0.02 617+035 0.69+0.03 4.92+038 0.00z0.00
KNN regressor 0.37 £0.01 2.34+0.06 029+0.01 193+0.04 0.75+0.02
MLP regressor 0.45+0.02 282+0.11 036+0.02 231+0.10 0.64+0.03

Table 2. Common features. Results of all machine learning models trained on the common
ElasticNet 0.60+0.02 4002020 0512002 326016 0.40+0.01 feature set. The mean absolute error (mean AE), median absolute error (median AE), and the r?
values are calculated in terms of log,, MFBTU values. The 10M¢® AE and 10Medi2n AE ¢olumns
show the average number of multiples away the model’s estimate is from the true value. The

values following “+” are the standard deviations of each metric calculated over the 10 cross
validation folds.

Lasso 0.79+0.02 617035 0.69+0.03 4.92+0.38 0.00+0.00



Feature Importance

“To aid the interpretability of our modeling process, we
determine which features are the most important to the
gradient boosting models

Feature importances in gradient boosting models are
calculated as the amount of reduction in Gini impurity each
feature causes over all splits for which that feature is present,
over all of the trees that make up the model.

These values give us the relative importance of each feature
included in a model, allowing us to rank the features in terms
of “most useful” in the model, and compare the relative
importance of features within a model.”

Feature

name
SQFT

NWKER

WKHRS

ZMFBTU

MONUSE
NGUSED

HDDG65

HEATP

CDD65

NWKERC

Extended feature set

Feature description

Square footage

Number of employees

Total hours open per week

Imputed major fuels

consumption
Months in use
Natural gas used

Heating degree days (base
65)

Percent heated

Cooling degree days (base
65)

Number of employees

category

Importance

0.1391

0.0576

0.0557

0.0312

0.0299
0.0295

0.0293

0.0278

0.0224

0.0221

Feature ranking
in common set



Feature Importance

When we train a gradient boosting
regressor on just samples from the
‘Service’ class of buildings we observe
that the most important feature is ‘Total
hours open per week’, instead of
‘Square footage’. This suggests that for
some PBAs, the common feature set
does not contain the correct signals to
reproduce the MFBTU targets.

Feature

name
SQFT

NWKER

WKHRS

ZMFBTU

MONUSE
NGUSED

HDDG65

HEATP

CDD65

NWKERC

Extended feature set

Feature description

Square footage

Number of employees

Total hours open per week

Imputed major fuels

consumption
Months in use
Natural gas used

Heating degree days (base
65)

Percent heated

Cooling degree days (base
65)

Number of employees

category

Importance

0.1391

0.0576

0.0557

0.0312

0.0299
0.0295

0.0293

0.0278

0.0224

0.0221

Feature ranking
in common set



How well does the model generalize to a different dataset?

Table 7. LL84 Validation. Comparison of the best external model tested on the LL84 dataset (out
of sample validation result) to all machine learning models trained and tested on the LL84
dataset. The first row, ‘XGBoost - CBECS/, is the best external model and shows the results
from applying the XGBoost model trained on all of the CBECS data, to all of the LL84 data.
The remaining rows show the cross validated results on models trained and tested on the
LL84 dataset. All results are shown with models using the common feature set. The mean
absolute error (mean AE), median absolute error (median AE), and the r? values are calculated
in terms of log,, MFBTU values. The 10 AF and 10Medien AE columns show the average
number of multiples away the model’s estimate is from the true value.



How well does the model generalize to a different dataset?

Mean absolute 10Me=n AL Median absolute JQMedian AR r?
error error
XGBoost - CBECS 0.25 1.78 0.15 141 0.51
Table 7. LL84 Validation. Comparison of the best external model tested on the LL84 dataset (out Atk SRS IREEIEE. AR
of sample validation result) to all machine learning models trained and tested on the LL84 SVR 025+0.02 177 +0.10 015+ 0.01 1.40+0.03 0514011
dataset. The first row, ‘XGBoost - CBECS/, is the best external model and shows the results
from applying the XGBoost model trained on all of the CBECS data, to all of the LL84 data. Linear SVR 0.28 +0.02 1.92+0.08 0.17£0.00 1.50+0.01 0.42+0.05
The remaining rows show the cross validated results on models trained and tested on the - L _—T ey,
LL84 dataset. All results are shown with models using the common feature set. The mean L S e Sl G R
absolute error (mean AE), median absolute error (median AE), and the r? values are calculated Linear regression 029+ 002 1.96+0.10 019+001 1.56+0.05 0.4 +0.08
in terms of log,, MFBTU values. The 10 AF and 10Medien AE columns show the average
number of multiples away the model’s estimate is from the true value. Ridge regressor 029£002 196010 019£001 156+0.05 044008
Bagging 0.29+0.02 1.95+0.09 0.18+0.01 1.50+0.04 0.43+0.08
Random forest 0.29+0.02 1.95+0.10 0.18+0.02 1.51+0.05 0.43+0.08
The gradient boosting model is again the S
best perfo rm | ng model however Extra trees regressor 0.30+0.03 2.00+0.12 0.18+0.01 1.51+0.05 0.39+0.09
1) H
su rprISIneg, When the grad|ent boostlng KNN regressor 0.30+0.03 2.01+0.15 0.19+0.02 1.53+0.06 0.40+0.12
model is trained on the LL84 data, it 0n|y AdaBoost 042007 2.67+043 030004 2.01:020 014022
i Lasso 0.45+0.01 2.80+0.04 033+0.01 213+0.06 Negative
performs slightly better than the model that g

was trained on the CBECS data. ElasticNet 045+ 0.01 2.80 +0.04 0332001 213+006 Negative



Applying the model to new locations

We applied the CBECS-trained gradient boosting

regression model to the 73,388 commercial EE9EN] e edian Energy Use Intensity
buildings in Atlanta from the CoStar real estate i

database.? We supplement the CoStar data with — el

the 2017 heating and cooling degree day data — ey

from the Oak Ridge Climate models. EES%S

Bl 472-518
Bl 518-354.2


https://www.sciencedirect.com/science/article/pii/S0306261917313429#fn3

Uses and Implications of this work

Urban planners will be able to benchmark the effects of environmental or climate
related policies affecting different sections of the urban region or make predictions
about the outcomes of proposed policies.

Can also help city and regional planners predict the energy burdens that could
result from alternative urban growth patterns and global warming scenarios.

Analysis of important features used by the machine learning models will serve to
drive future data collection efforts that could help maximize the accuracy of the
models.



Limitations

The error is too large for analyzing the
energy consumption of any specific
building. But when the models are used
to make predictions for all the buildings
in entire metropolitan areas (where
individual prediction errors will cancel
out when aggregated), as we show for
Atlanta, they can offer useful insights
into a city’s commercial energy
consumption landscape.
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Recap

Residential

Total = 24.3 PWh

Commercial

Total = 8.42 PWh

W Appliances

M Cooking

W Space Heating
W Water Heating
W Lighting

W Cooling

I Other

(IT Equipment, etc.)

Predicted log,,MFBTU

Avg. Total Household Carbon Footprint by CoolClimate Network
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@ MapBox

New York, New York County, NY
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